BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29136377)

  • 21. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification.
    Huesgen PF; Lange PF; Rogers LD; Solis N; Eckhard U; Kleifeld O; Goulas T; Gomis-Rüth FX; Overall CM
    Nat Methods; 2015 Jan; 12(1):55-8. PubMed ID: 25419962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis.
    Davis S; Charles PD; He L; Mowlds P; Kessler BM; Fischer R
    J Proteome Res; 2017 Mar; 16(3):1288-1299. PubMed ID: 28164708
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Choong WK; Chen CT; Wang JH; Sung TY
    J Proteome Res; 2019 Dec; 18(12):4124-4132. PubMed ID: 31429573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LysargiNase and Chemical Derivatization Based Strategy for Facilitating In-Depth Profiling of C-Terminome.
    Hu H; Zhao W; Zhu M; Zhao L; Zhai L; Xu JY; Liu P; Tan M
    Anal Chem; 2019 Nov; 91(22):14522-14529. PubMed ID: 31634432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addressing trypsin bias in large scale (phospho)proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides.
    Tran BQ; Hernandez C; Waridel P; Potts A; Barblan J; Lisacek F; Quadroni M
    J Proteome Res; 2011 Feb; 10(2):800-11. PubMed ID: 21166477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying multiple proteases to direct digestion of hundred-scale cell samples for proteome analysis.
    Chen Q; Yan G; Zhang X
    Rapid Commun Mass Spectrom; 2015 Aug; 29(15):1389-94. PubMed ID: 26147478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease.
    Soh WT; Demir F; Dall E; Perrar A; Dahms SO; Kuppusamy M; Brandstetter H; Huesgen PF
    Anal Chem; 2020 Feb; 92(4):2961-2971. PubMed ID: 31951383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suitability of animals' purified milk caseins and their subunit kappa-caseins as substrates for subtilisin and trypsin.
    Dogru M; Baysal Z; Aytekin C
    Prep Biochem Biotechnol; 2001 May; 31(2):147-54. PubMed ID: 11426702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The proteomic analysis improved by cleavage kinetics-based fractionation of tryptic peptides.
    Pan Y; Mao J; Deng Z; Dong M; Bian Y; Ye M; Zou H
    Proteomics; 2015 Nov; 15(21):3613-6. PubMed ID: 26256691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated platform with a combination of online digestion and (18)O labeling for proteome quantification via an immobilized trypsin microreactor.
    Zhang S; Yuan H; Zhao B; Zhou Y; Jiang H; Zhang L; Liang Z; Zhang Y
    Analyst; 2015 Aug; 140(15):5227-34. PubMed ID: 26063120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cleaved and missed sites for trypsin, lys-C, and lys-N can be predicted with high confidence on the basis of sequence context.
    Gershon PD
    J Proteome Res; 2014 Feb; 13(2):702-9. PubMed ID: 24328144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemically modified, immobilized trypsin reactor with improved digestion efficiency.
    Freije JR; Mulder PP; Werkman W; Rieux L; Niederlander HA; Verpoorte E; Bischoff R
    J Proteome Res; 2005; 4(5):1805-13. PubMed ID: 16212436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of proteases complementary to trypsin to probe isoforms and modifications.
    Trevisiol S; Ayoub D; Lesur A; Ancheva L; Gallien S; Domon B
    Proteomics; 2016 Mar; 16(5):715-28. PubMed ID: 26663565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.
    Gauci S; Helbig AO; Slijper M; Krijgsveld J; Heck AJ; Mohammed S
    Anal Chem; 2009 Jun; 81(11):4493-501. PubMed ID: 19413330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved Coverage of the N-Terminome by Combining ChaFRADIC with Alternative Proteases.
    Jiang X; Lao Y; Spicer V; Zahedi RP
    Methods Mol Biol; 2023; 2718():99-110. PubMed ID: 37665456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme.
    Noda Y; Fujiwara K; Yamamoto K; Fukuno T; Segawa S
    Biopolymers; 1994 Feb; 34(2):217-26. PubMed ID: 8142590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.