BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29136418)

  • 41. Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.
    Schlagenhauf L; Kuo YY; Michel S; Terrasi G; Wang J
    J Occup Environ Hyg; 2015; 12(8):D178-83. PubMed ID: 25789600
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exposure to manufactured nanostructured particles in an industrial pilot plant.
    Demou E; Peter P; Hellweg S
    Ann Occup Hyg; 2008 Nov; 52(8):695-706. PubMed ID: 18931382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
    Dahm MM; Schubauer-Berigan MK; Evans DE; Birch ME; Fernback JE; Deddens JA
    Ann Occup Hyg; 2015 Jul; 59(6):705-23. PubMed ID: 25851309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conductive polyurethane composites containing polyaniline-coated nano-silica.
    Liu BT; Syu JR; Wang DH
    J Colloid Interface Sci; 2013 Mar; 393():138-42. PubMed ID: 23261334
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies.
    Johnson DR; Methner MM; Kennedy AJ; Steevens JA
    Environ Health Perspect; 2010 Jan; 118(1):49-54. PubMed ID: 20056572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.
    Kong X; Zhao L; Curtis JM
    Carbohydr Polym; 2016 Nov; 152():487-495. PubMed ID: 27516296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes.
    Choi KM; An HC; Kim KS
    J Occup Environ Hyg; 2015; 12(2):114-22. PubMed ID: 25192369
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insight into the behavior of engineered aerosolized nanoparticles: a method for understanding their fate from an aerosol release in the workplace environment.
    Ostraat ML; Swain KA; Small RJ
    Int J Occup Environ Health; 2010; 16(4):458-66. PubMed ID: 21222389
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.
    Brenner SA; Neu-Baker NM; Caglayan C; Zurbenko IG
    J Occup Environ Hyg; 2016 Sep; 13(9):D138-47. PubMed ID: 27135871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Systematic Review of Reported Exposure to Engineered Nanomaterials.
    Debia M; Bakhiyi B; Ostiguy C; Verbeek JH; Brouwer DH; Murashov V
    Ann Occup Hyg; 2016 Oct; 60(8):916-35. PubMed ID: 27422281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafine particle characteristics in a rubber manufacturing factory.
    Kim B; Lee JS; Choi BS; Park SY; Yoon JH; Kim H
    Ann Occup Hyg; 2013 Jul; 57(6):728-39. PubMed ID: 23307862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments.
    Raynor PC; Cebula JI; Spangenberger JS; Olson BA; Dasch JM; D'Arcy JB
    J Occup Environ Hyg; 2012; 9(1):1-13. PubMed ID: 22168254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoparticle exposure at nanotechnology workplaces: a review.
    Kuhlbusch TA; Asbach C; Fissan H; Göhler D; Stintz M
    Part Fibre Toxicol; 2011 Jul; 8():22. PubMed ID: 21794132
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and human health risk assessment.
    Kovochich M; Fung CD; Avanasi R; Madl AK
    J Expo Sci Environ Epidemiol; 2018 May; 28(3):203-215. PubMed ID: 28561036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processes.
    Ding Y; Kuhlbusch TAJ; Van Tongeren M; Jiménez AS; Tuinman I; Chen R; Alvarez IL; Mikolajczyk U; Nickel C; Meyer J; Kaminski H; Wohlleben W; Stahlmecke B; Clavaguera S; Riediker M
    J Hazard Mater; 2017 Jan; 322(Pt A):17-28. PubMed ID: 27181990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications.
    Choi SM; Shin EJ; Zo SM; Rao KM; Seok YJ; Won SY; Han SS
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216059
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A proposal of method for evaluating airborne MWCNT concentration.
    Ono-Ogasawara M; Myojo T
    Ind Health; 2011; 49(6):726-34. PubMed ID: 22020016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.