BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29136577)

  • 1. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests.
    Zhu X; Cirovic S; Shaheen A; Xu W
    Biomech Model Mechanobiol; 2018 Jun; 17(3):665-674. PubMed ID: 29196829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new framework for characterization of poroelastic materials using indentation.
    Esteki MH; Alemrajabi AA; Hall CM; Sheridan GK; Azadi M; Moeendarbary E
    Acta Biomater; 2020 Jan; 102():138-148. PubMed ID: 31715334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of F-actin and Microtubules on Cellular Mechanical Behavior Studied Using Atomic Force Microscope and an Image Recognition-Based Cytoskeleton Quantification Approach.
    Liu Y; Mollaeian K; Shamim MH; Ren J
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.
    Connizzo BK; Grodzinsky AJ
    J Biomech; 2017 Mar; 54():11-18. PubMed ID: 28233551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poroelasticity of cartilage at the nanoscale.
    Nia HT; Han L; Li Y; Ortiz C; Grodzinsky A
    Biophys J; 2011 Nov; 101(9):2304-13. PubMed ID: 22067171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics.
    Oftadeh R; Connizzo BK; Nia HT; Ortiz C; Grodzinsky AJ
    Acta Biomater; 2018 Apr; 70():249-259. PubMed ID: 29425716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.
    Heris HK; Miri AK; Tripathy U; Barthelat F; Mongeau L
    J Mech Behav Biomed Mater; 2013 Dec; 28():383-92. PubMed ID: 23829979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
    Nia HT; Han L; Bozchalooi IS; Roughley P; Youcef-Toumi K; Grodzinsky AJ; Ortiz C
    ACS Nano; 2015 Mar; 9(3):2614-25. PubMed ID: 25758717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytoplasm of living cells behaves as a poroelastic material.
    Moeendarbary E; Valon L; Fritzsche M; Harris AR; Moulding DA; Thrasher AJ; Stride E; Mahadevan L; Charras GT
    Nat Mater; 2013 Mar; 12(3):253-61. PubMed ID: 23291707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].
    Wang Z; Hao F; Chen X; Yang Z; Ding C; Shang P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1075-9. PubMed ID: 25764725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing poroelasticity of biological tissues by spherical indentation: an improved theory for large relaxation.
    Wang M; Liu S; Xu Z; Qu K; Li M; Chen X; Xue Q; Genin GM; Lu TJ; Xu F
    J Mech Phys Solids; 2020 May; 138():. PubMed ID: 33132418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of intracellular poroelasticity on freezing-induced deformation of cells in engineered tissues.
    Ghosh S; Ozcelikkale A; Dutton JC; Han B
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties study of SW480 cells based on AFM.
    Liu X; Song Z; Qu Y; Wang G; Wang Z
    Cell Biol Int; 2015 Aug; 39(8):972-7. PubMed ID: 25881744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy.
    Costa KD; Yin FC
    J Biomech Eng; 1999 Oct; 121(5):462-71. PubMed ID: 10529912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Heterogeneity of Living Cells: Comparison between Atomic Force Microscopy and Finite Element Simulation.
    Tang G; Galluzzi M; Zhang B; Shen YL; Stadler FJ
    Langmuir; 2019 Jun; 35(23):7578-7587. PubMed ID: 30272980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth-sensing analysis of cytoskeleton organization based on AFM data.
    Pogoda K; Jaczewska J; Wiltowska-Zuber J; Klymenko O; Zuber K; Fornal M; Lekka M
    Eur Biophys J; 2012 Jan; 41(1):79-87. PubMed ID: 22038077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.