These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29136578)

  • 1. Deformation mechanisms of prototype composite braided stent-grafts in bending fatigue for peripheral artery application.
    Xue W; Gao J; Lin J; Wang F; Guan G; Wang L
    J Mech Behav Biomed Mater; 2018 Feb; 78():74-81. PubMed ID: 29136578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational mechanics of Nitinol stent grafts.
    Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA
    J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model.
    Desai M; Bakhshi R; Zhou X; Odlyha M; You Z; Seifalian AM; Hamilton G
    J Endovasc Ther; 2012 Jun; 19(3):415-27. PubMed ID: 22788896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions.
    Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y
    Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The consequences of the mechanical environment of peripheral arteries for nitinol stenting.
    Early M; Kelly DJ
    Med Biol Eng Comput; 2011 Nov; 49(11):1279-88. PubMed ID: 21833628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts.
    Masoumi Khalil Abad E; Pasini D; Cecere R
    J Biomech; 2012 Apr; 45(6):1028-35. PubMed ID: 22304844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions.
    Nikanorov A; Smouse HB; Osman K; Bialas M; Shrivastava S; Schwartz LB
    J Vasc Surg; 2008 Aug; 48(2):435-40. PubMed ID: 18486426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitinol stent design - understanding axial buckling.
    McGrath DJ; O Brien B; Bruzzi M; McHugh PE
    J Mech Behav Biomed Mater; 2014 Dec; 40():252-263. PubMed ID: 25255420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations.
    Maleckis K; Deegan P; Poulson W; Sievers C; Desyatova A; MacTaggart J; Kamenskiy A
    J Mech Behav Biomed Mater; 2017 Nov; 75():160-168. PubMed ID: 28734257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resorbable bicomponent braided ureteral stent with improved mechanical performance.
    Zou T; Wang L; Li W; Wang W; Chen F; King MW
    J Mech Behav Biomed Mater; 2014 Oct; 38():17-25. PubMed ID: 24997428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin-film nitinol (NiTi): a feasibility study for a novel aortic stent graft material.
    Rigberg D; Tulloch A; Chun Y; Mohanchandra KP; Carman G; Lawrence P
    J Vasc Surg; 2009 Aug; 50(2):375-80. PubMed ID: 19631872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue and durability of Nitinol stents.
    Pelton AR; Schroeder V; Mitchell MR; Gong XY; Barney M; Robertson SW
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):153-64. PubMed ID: 19627780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents.
    McKenna CG; Vaughan TJ
    J Mech Behav Biomed Mater; 2020 Mar; 103():103549. PubMed ID: 31783281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Nitinol Stents Using a 3-Dimensional Printed Superficial Femoral Artery Model: A Preliminary Study.
    Girsowicz E; Georg Y; Seiller H; Lejay A; Thaveau F; Heim F; Chakfe N
    Ann Vasc Surg; 2016 May; 33():1-10. PubMed ID: 26597246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design.
    Müller-Hülsbeck S; Schäfer PJ; Charalambous N; Yagi H; Heller M; Jahnke T
    J Endovasc Ther; 2010 Dec; 17(6):767-76. PubMed ID: 21142489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires.
    Zheng Q; Dong P; Li Z; Han X; Zhou C; An M; Gu L
    Nanotechnol Rev; 2019 Jan; 8(1):168-174. PubMed ID: 35966892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners.
    Zhao F; Xue W; Wang F; Sun J; Lin J; Liu L; Sun K; Wang L
    J Mech Behav Biomed Mater; 2019 Jan; 89():19-32. PubMed ID: 30236978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.
    Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L
    Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.