BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29136800)

  • 1. Polyamidoamine starburst dendrimer-activated chromatography paper-based assay for sensitive detection of telomerase activity.
    Zhang H; Lei Z; Tian R; Wang Z
    Talanta; 2018 Feb; 178():116-121. PubMed ID: 29136800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCR-free and label-free fluorescent detection of telomerase activity at single-cell level based on triple amplification.
    Gao Y; Xu J; Li B; Jin Y
    Biosens Bioelectron; 2016 Jul; 81():415-422. PubMed ID: 26999622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence detection of telomerase activity in cancer cell extracts based on autonomous exonuclease III-assisted isothermal cycling signal amplification.
    Ding C; Li X; Wang W; Chen Y
    Biosens Bioelectron; 2016 Sep; 83():102-5. PubMed ID: 27108253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization.
    Liu X; Wei M; Xu E; Yang H; Wei W; Zhang Y; Liu S
    Biosens Bioelectron; 2017 May; 91():347-353. PubMed ID: 28043077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24.
    Li F; Peng J; Zheng Q; Guo X; Tang H; Yao S
    Anal Chem; 2015; 87(9):4806-13. PubMed ID: 25874968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.
    Ciolkowski M; Rozanek M; Bryszewska M; Klajnert B
    Biochim Biophys Acta; 2013 Oct; 1834(10):1982-7. PubMed ID: 23851144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telomere elongation-based DNA-Catalytic amplification strategy for sensitive SERS detection of telomerase activity.
    Li Y; Han H; Wu Y; Yu C; Ren C; Zhang X
    Biosens Bioelectron; 2019 Oct; 142():111543. PubMed ID: 31376711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel solid-state Ru(bpy)3(2+) electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants.
    Xiong C; Wang H; Yuan Y; Chai Y; Yuan R
    Talanta; 2015 Jan; 131():192-7. PubMed ID: 25281092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and molecular modeling studies of the interaction between morin and polyamidoamine dendrimer.
    Zhang H; Cao J; Wang Y
    Luminescence; 2014 Sep; 29(6):573-8. PubMed ID: 24108475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction mechanism between lipopeptide (daptomycin) and polyamidoamine (PAMAM) dendrimers.
    Chanvorachote B; Qiu J; Muangsiri W; Nimmannit U; Kirsch LE
    J Pept Sci; 2015 Apr; 21(4):312-9. PubMed ID: 25694356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene therapy for ovarian cancer using carbonyl reductase 1 DNA with a polyamidoamine dendrimer in mouse models.
    Kobayashi A; Yokoyama Y; Osawa Y; Miura R; Mizunuma H
    Cancer Gene Ther; 2016 Jan; 23(1):24-8. PubMed ID: 26584532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free molecular beacons-based cascade amplification DNA machine for sensitive detection of telomerase activity.
    Li K; Wang L; Xu X; Jiang W
    Talanta; 2017 May; 167():645-650. PubMed ID: 28340773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive detection of telomerase activity at the single-cell level.
    Wang LJ; Zhang Y; Zhang CY
    Anal Chem; 2013 Dec; 85(23):11509-17. PubMed ID: 24206055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity.
    Liu H; Lou Y; Zhou F; Zhu H; Abdel-Halim ES; Zhu JJ
    Biosens Bioelectron; 2015 Sep; 71():249-255. PubMed ID: 25913445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid DNA detection using filter paper.
    Song Y; Gyarmati P
    N Biotechnol; 2020 Mar; 55():77-83. PubMed ID: 31622785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamidoamine Starburst dendrimers as solubility enhancers.
    Milhem OM; Myles C; McKeown NB; Attwood D; D'Emanuele A
    Int J Pharm; 2000 Mar; 197(1-2):239-41. PubMed ID: 10704811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery.
    Zhang XQ; Intra J; Salem AK
    Bioconjug Chem; 2007; 18(6):2068-76. PubMed ID: 17848077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of functional groups on the surface of carboxyl group-terminated polyamidoamine dendrimers bearing arbutin in inhibition of Na⁺/glucose cotransporter 1 (SGLT1)-mediated D-glucose uptake.
    Sakuma S; Kanamitsu S; Teraoka Y; Masaoka Y; Kataoka M; Yamashita S; Shirasaka Y; Tamai I; Muraoka M; Nakatsuji Y; Kida T; Akashi M
    Mol Pharm; 2012 Apr; 9(4):922-9. PubMed ID: 22352425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA microarrays with PAMAM dendritic linker systems.
    Benters R; Niemeyer CM; Drutschmann D; Blohm D; Wöhrle D
    Nucleic Acids Res; 2002 Jan; 30(2):E10. PubMed ID: 11788736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence detection of telomerase activity in high concentration of cell lysates based on strand-displacement mediated recycling.
    Li X; Wang W; Chen Y; Ding C
    Analyst; 2016 Apr; 141(8):2388-91. PubMed ID: 27010225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.