These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29136810)

  • 41. A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties.
    Aleixandre M; Santos JP; Sayago I; Cabellos JM; Arroyo T; Horrillo MC
    Sensors (Basel); 2015 Apr; 15(4):8429-43. PubMed ID: 25871715
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.).
    Allegro G; Pastore C; Valentini G; Muzzi E; Filippetti I
    J Sci Food Agric; 2016 Oct; 96(13):4553-9. PubMed ID: 26888489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts.
    Garcia-Hernandez C; Medina-Plaza C; Garcia-Cabezon C; Martin-Pedrosa F; del Valle I; Antonio de Saja J; Rodríguez-Méndez ML
    Sensors (Basel); 2015 Nov; 15(11):29233-49. PubMed ID: 26610494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins.
    Nogales-Bueno J; Baca-Bocanegra B; Rodríguez-Pulido FJ; Heredia FJ; Hernández-Hierro JM
    Food Chem; 2015 Apr; 172():559-64. PubMed ID: 25442592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing.
    Croce R; Malegori C; Oliveri P; Medici I; Cavaglioni A; Rossi C
    Food Chem; 2020 Feb; 305():125512. PubMed ID: 31610422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaf removal and wine composition of Vitis vinifera L. cv. Nero d'Avola: the volatile aroma constituents.
    Verzera A; Tripodi G; Dima G; Condurso C; Scacco A; Cincotta F; Giglio DM; Santangelo T; Sparacio A
    J Sci Food Agric; 2016 Jan; 96(1):150-9. PubMed ID: 25581439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of NIR spectral data management for quality control of grape bunches during on-vine ripening.
    González-Caballero V; Pérez-Marín D; López MI; Sánchez MT
    Sensors (Basel); 2011; 11(6):6109-24. PubMed ID: 22163944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins.
    Wang J; Zhu L; Zhang W; Wei Z
    Anal Chim Acta; 2019 Mar; 1050():60-70. PubMed ID: 30661592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards reliable estimation of an "electronic tongue" predictive ability from PLS regression models in wine analysis.
    Kirsanov D; Mednova O; Vietoris V; Kilmartin PA; Legin A
    Talanta; 2012 Feb; 90():109-16. PubMed ID: 22340124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety cabernet sauvignon.
    Sala C; Busto O; Guasch J; Zamora F
    J Agric Food Chem; 2004 Jun; 52(11):3492-7. PubMed ID: 15161221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties.
    Gomes V; Fernandes A; Martins-Lopes P; Pereira L; Mendes Faia A; Melo-Pinto P
    Food Chem; 2017 Mar; 218():40-46. PubMed ID: 27719927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring of beer fermentation based on hybrid electronic tongue.
    Kutyła-Olesiuk A; Zaborowski M; Prokaryn P; Ciosek P
    Bioelectrochemistry; 2012 Oct; 87():104-13. PubMed ID: 22341624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.
    Gutiérrez M; Llobera A; Vila-Planas J; Capdevila F; Demming S; Büttgenbach S; Mínguez S; Jiménez-Jorquera C
    Analyst; 2010 Jul; 135(7):1718-25. PubMed ID: 20445923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of seasonal climate fluctuations on the evolution of glycoconjugates during the ripening period of grapevine cv. Muscat à petits grains blancs berries.
    Crespo J; Rigou P; Romero V; García M; Arroyo T; Cabellos JM
    J Sci Food Agric; 2018 Mar; 98(5):1803-1812. PubMed ID: 28873234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voltammetric electronic tongue to identify Brett character in wines. On-site quantification of its ethylphenol metabolites.
    González-Calabuig A; Del Valle M
    Talanta; 2018 Mar; 179():70-74. PubMed ID: 29310296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification.
    Han F; Zhang D; Aheto JH; Feng F; Duan T
    Food Sci Nutr; 2020 Aug; 8(8):4330-4339. PubMed ID: 32884713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feasibility study on the use of near-infrared hyperspectral imaging for the screening of anthocyanins in intact grapes during ripening.
    Hernández-Hierro JM; Nogales-Bueno J; Rodríguez-Pulido FJ; Heredia FJ
    J Agric Food Chem; 2013 Oct; 61(41):9804-9. PubMed ID: 24053464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using an automatic pulse voltammetric electronic tongue to verify the origin of honey from Spain, Honduras, and Mozambique.
    Sobrino-Gregorio L; Tanleque-Alberto F; Bataller R; Soto J; Escriche I
    J Sci Food Agric; 2020 Jan; 100(1):212-217. PubMed ID: 31487046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Excitation-emission fluorescence as a tool to assess the presence of grape-must caramel in PDO wine vinegars.
    Ríos-Reina R; Ocaña JA; Azcarate SM; Pérez-Bernal JL; Villar-Navarro M; Callejón RM
    Food Chem; 2019 Jul; 287():115-125. PubMed ID: 30857680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Screening of anthocyanins in single red grapes using a non-destructive method based on the near infrared hyperspectral technology and chemometrics.
    Martínez-Sandoval JR; Nogales-Bueno J; Rodríguez-Pulido FJ; Hernández-Hierro JM; Segovia-Quintero MA; Martínez-Rosas ME; Heredia FJ
    J Sci Food Agric; 2016 Mar; 96(5):1643-7. PubMed ID: 26009839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.