These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29136939)

  • 1. Process simulation and economic assessment of hydrothermal pretreatment and enzymatic hydrolysis of multi-feedstock lignocellulose - Separate vs combined processing.
    Ashraf MT; Schmidt JE
    Bioresour Technol; 2018 Feb; 249():835-843. PubMed ID: 29136939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions.
    Ashraf MT; Thomsen MH; Schmidt JE
    Bioresour Technol; 2017 Aug; 238():369-378. PubMed ID: 28456045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation.
    Chen Z; Liu G; Zhang J; Bao J
    Bioresour Technol; 2019 Jan; 271():196-201. PubMed ID: 30268811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheat bran biorefinery--an insight into the process chain for the production of lactic acid.
    Tirpanalan Ö; Reisinger M; Smerilli M; Huber F; Neureiter M; Kneifel W; Novalin S
    Bioresour Technol; 2015 Mar; 180():242-9. PubMed ID: 25616238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis.
    Yuan Y; Jiang B; Chen H; Wu W; Wu S; Jin Y; Xiao H
    Biotechnol Biofuels; 2021 Oct; 14(1):205. PubMed ID: 34670604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic ethanol: Technology design and its impact on process efficiency.
    Paulova L; Patakova P; Branska B; Rychtera M; Melzoch K
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1091-107. PubMed ID: 25485865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.
    Ko JK; Um Y; Park YC; Seo JH; Kim KH
    Appl Microbiol Biotechnol; 2015 May; 99(10):4201-12. PubMed ID: 25904131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.
    Chandel AK; Gonçalves BC; Strap JL; da Silva SS
    Crit Rev Biotechnol; 2015; 35(3):281-93. PubMed ID: 24156399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.
    Chang CW; Webb C
    Bioresour Technol; 2017 Mar; 227():35-43. PubMed ID: 28013134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels.
    van der Pol EC; Bakker RR; Baets P; Eggink G
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9579-93. PubMed ID: 25370992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bermuda grass as feedstock for biofuel production: a review.
    Xu J; Wang Z; Cheng JJ
    Bioresour Technol; 2011 Sep; 102(17):7613-20. PubMed ID: 21683586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorefining of Lignocellulosic Feedstock by a Modified Ammonia Fiber Expansion Pretreatment and Enzymatic Hydrolysis for Production of Fermentable Sugars.
    Kamm B; Leiß S; Schönicke P; Bierbaum M
    ChemSusChem; 2017 Jan; 10(1):48-52. PubMed ID: 27898203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.
    Jung YH; Park HM; Park YC; Park K; Kim KH
    Bioresour Technol; 2017 Jul; 236():234-237. PubMed ID: 28416125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
    Bhalla A; Bansal N; Kumar S; Bischoff KM; Sani RK
    Bioresour Technol; 2013 Jan; 128():751-9. PubMed ID: 23246299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionating recalcitrant lignocellulose at modest reaction conditions.
    Zhang YH; Ding SY; Mielenz JR; Cui JB; Elander RT; Laser M; Himmel ME; McMillan JR; Lynd LR
    Biotechnol Bioeng; 2007 Jun; 97(2):214-23. PubMed ID: 17318910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis.
    Redding AP; Wang Z; Keshwani DR; Cheng JJ
    Bioresour Technol; 2011 Jan; 102(2):1415-24. PubMed ID: 20943378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production.
    Kapanji KK; Haigh KF; Görgens JF
    Bioresour Technol; 2019 Oct; 289():121635. PubMed ID: 31254898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production.
    Subhedar PB; Babu NR; Gogate PR
    Ultrason Sonochem; 2015 Jan; 22():326-32. PubMed ID: 25060116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.