BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29137397)

  • 1. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage.
    Wakeman TP; Yang A; Dalal NS; Boohaker RJ; Zeng Q; Ding Q; Xu B
    Oncotarget; 2017 Oct; 8(48):83975-83985. PubMed ID: 29137397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ; Ceryak S; Patierno SR
    Mutat Res; 2003 Dec; 533(1-2):3-36. PubMed ID: 14643411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium genotoxicity: A double-edged sword.
    Nickens KP; Patierno SR; Ceryak S
    Chem Biol Interact; 2010 Nov; 188(2):276-88. PubMed ID: 20430016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair.
    Reynolds M; Stoddard L; Bespalov I; Zhitkovich A
    Nucleic Acids Res; 2007; 35(2):465-76. PubMed ID: 17169990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.
    Qin Q; Xie H; Wise SS; Browning CL; Thompson KN; Holmes AL; Wise JP
    Toxicol Sci; 2014 Nov; 142(1):117-25. PubMed ID: 25173789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carcinogenicity of chromium and chemoprevention: a brief update.
    Wang Y; Su H; Gu Y; Song X; Zhao J
    Onco Targets Ther; 2017; 10():4065-4079. PubMed ID: 28860815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATM-SMC1 pathway is essential for activation of the chromium[VI]-induced S-phase checkpoint.
    Wakeman TP; Kim WJ; Callens S; Chiu A; Brown KD; Xu B
    Mutat Res; 2004 Oct; 554(1-2):241-51. PubMed ID: 15450422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium-induced genotoxicity and apoptosis: relationship to chromium carcinogenesis (review).
    Singh J; Carlisle DL; Pritchard DE; Patierno SR
    Oncol Rep; 1998; 5(6):1307-18. PubMed ID: 9769362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged Particulate Hexavalent Chromium Exposure Induces DNA Double-Strand Breaks and Inhibits Homologous Recombination Repair in Primary Rodent Lung Cells.
    Wise JTF; Lu H; Meaza I; Wise SS; Williams AR; Wise JY; Mason MD; Wise JP
    Biol Trace Elem Res; 2024 Mar; ():. PubMed ID: 38499919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI).
    Zhitkovich A; Quievryn G; Messer J; Motylevich Z
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):729-31. PubMed ID: 12426121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different ATM Signaling in Response to Chromium(VI) Metabolism via Ascorbate and Nonascorbate Reduction: Implications for in Vitro Models and Toxicogenomics.
    Luczak MW; Green SE; Zhitkovich A
    Environ Health Perspect; 2016 Jan; 124(1):61-6. PubMed ID: 25977998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.
    Browning CL; Qin Q; Kelly DF; Prakash R; Vanoli F; Jasin M; Wise JP
    Toxicol Sci; 2016 Sep; 153(1):70-8. PubMed ID: 27449664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.
    Proctor DM; Suh M; Campleman SL; Thompson CM
    Toxicology; 2014 Nov; 325():160-79. PubMed ID: 25174529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical mechanisms of DNA damage by carcinogenic chromium(VI).
    Krawic C; Zhitkovich A
    Adv Pharmacol; 2023; 96():25-46. PubMed ID: 36858775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand breaks and dG hydroxylation via free radical reactions.
    Shi X; Ding M; Ye J; Wang S; Leonard SS; Zang L; Castranova V; Vallyathan V; Chiu A; Dalal N; Liu K
    J Inorg Biochem; 1999 May; 75(1):37-44. PubMed ID: 10402675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative histological studies on liver of mice exposed to Cr(VI) and Cr(V) compounds.
    das Neves RP; Santos TM; Pereira Mde L; de Jesus JP
    Hum Exp Toxicol; 2002 Jul; 21(7):365-9. PubMed ID: 12269698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(VI) enhances (+/-)-anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-induced cytotoxicity and mutagenicity in mammalian cells through its inhibitory effect on nucleotide excision repair.
    Hu W; Feng Z; Tang MS
    Biochemistry; 2004 Nov; 43(44):14282-9. PubMed ID: 15518579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentially deadly carcinogenic chromium redox cycle involving peroxochromium(IV) and glutathione.
    Marin R; Ahuja Y; Bose RN
    J Am Chem Soc; 2010 Aug; 132(31):10617-9. PubMed ID: 20681676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
    Mishra M; Sharma A; Negi MP; Dwivedi UN; Chowdhuri DK
    Mutat Res; 2011 May; 722(1):44-51. PubMed ID: 21382505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower mutagenicity but higher stability of Cr-DNA adducts formed during gradual chromate activation with ascorbate.
    Quievryn G; Messer J; Zhitkovich A
    Carcinogenesis; 2006 Nov; 27(11):2316-21. PubMed ID: 16714765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.