BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

838 related articles for article (PubMed ID: 29137603)

  • 1. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of topologically associating domain callers over mammals at high resolution.
    Sefer E
    BMC Bioinformatics; 2022 Apr; 23(1):127. PubMed ID: 35413815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data.
    Liu J; Li P; Sun J; Guo J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Topologically Associating Domain Callers Based on Hi-C Data.
    Liu K; Li HD; Li Y; Wang J; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):15-29. PubMed ID: 35104223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOAST: A novel method for identifying topologically associated domains based on graph auto-encoders and clustering.
    Gong H; Zhang D; Zhang X
    Comput Struct Biotechnol J; 2023; 21():4759-4768. PubMed ID: 37822562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hierarchical chromatin domains.
    Weinreb C; Raphael BJ
    Bioinformatics; 2016 Jun; 32(11):1601-9. PubMed ID: 26315910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
    Zhan Y; Mariani L; Barozzi I; Schulz EG; Blüthgen N; Stadler M; Tiana G; Giorgetti L
    Genome Res; 2017 Mar; 27(3):479-490. PubMed ID: 28057745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling genome-wide topological associating domains in mouse embryonic stem cells.
    Zhan Y; Giorgetti L; Tiana G
    Chromosome Res; 2017 Mar; 25(1):5-14. PubMed ID: 28108933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.
    Gong Y; Lazaris C; Sakellaropoulos T; Lozano A; Kambadur P; Ntziachristos P; Aifantis I; Tsirigos A
    Nat Commun; 2018 Feb; 9(1):542. PubMed ID: 29416042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InTAD: chromosome conformation guided analysis of enhancer target genes.
    Okonechnikov K; Erkek S; Korbel JO; Pfister SM; Chavez L
    BMC Bioinformatics; 2019 Jan; 20(1):60. PubMed ID: 30704404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.