These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 29137608)
1. The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization. Thomas JB; Hampton ME; Dorn KM; David Marks M; Carter CJ BMC Plant Biol; 2017 Nov; 17(1):201. PubMed ID: 29137608 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. Kram BW; Xu WW; Carter CJ BMC Plant Biol; 2009 Jul; 9():92. PubMed ID: 19604393 [TBL] [Abstract][Full Text] [Related]
3. Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae). Denisow B; Masierowska M; Antoń S Protoplasma; 2016 Nov; 253(6):1489-1501. PubMed ID: 26560112 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion. Liu H; Ma J; Li H BMC Plant Biol; 2019 Dec; 19(1):531. PubMed ID: 31791230 [TBL] [Abstract][Full Text] [Related]
5. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. Dorn KM; Fankhauser JD; Wyse DL; Marks MD DNA Res; 2015 Apr; 22(2):121-31. PubMed ID: 25632110 [TBL] [Abstract][Full Text] [Related]
6. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Dorn KM; Fankhauser JD; Wyse DL; Marks MD Plant J; 2013 Sep; 75(6):1028-38. PubMed ID: 23786378 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae. Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897 [TBL] [Abstract][Full Text] [Related]
8. PIN6 is required for nectary auxin response and short stamen development. Bender RL; Fekete ML; Klinkenberg PM; Hampton M; Bauer B; Malecha M; Lindgren K; A Maki J; Perera MA; Nikolau BJ; Carter CJ Plant J; 2013 Jun; 74(6):893-904. PubMed ID: 23551385 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis thaliana as a model for functional nectary analysis. Kram BW; Carter CJ Sex Plant Reprod; 2009 Dec; 22(4):235-46. PubMed ID: 20033445 [TBL] [Abstract][Full Text] [Related]
10. CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. Ruhlmann JM; Kram BW; Carter CJ J Exp Bot; 2010; 61(2):395-404. PubMed ID: 19861655 [TBL] [Abstract][Full Text] [Related]
11. Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Davis AR; Pylatuik JD; Paradis JC; Low NH Planta; 1998 Jun; 205(2):305-18. PubMed ID: 9637073 [TBL] [Abstract][Full Text] [Related]
12. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Sedbrook JC; Phippen WB; Marks MD Plant Sci; 2014 Oct; 227():122-32. PubMed ID: 25219314 [TBL] [Abstract][Full Text] [Related]
13. Detaling morphological traits of Trollius europeus L. flowers, nectary structure, and holocrine nectar secretion through combined light and electron microscopy. Sulborska-Różycka A; Weryszko-Chmielewska E Micron; 2022 Nov; 162():103345. PubMed ID: 36113361 [TBL] [Abstract][Full Text] [Related]
14. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). Claver A; Rey R; López MV; Picorel R; Alfonso M J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523 [TBL] [Abstract][Full Text] [Related]
15. Natural variation and improved genome annotation of the emerging biofuel crop field pennycress (Thlaspi arvense). García Navarrete T; Arias C; Mukundi E; Alonso AP; Grotewold E G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35416986 [TBL] [Abstract][Full Text] [Related]
16. Identification of differential gene expression in Brassica rapa nectaries through expressed sequence tag analysis. Hampton M; Xu WW; Kram BW; Chambers EM; Ehrnriter JS; Gralewski JH; Joyal T; Carter CJ PLoS One; 2010 Jan; 5(1):e8782. PubMed ID: 20098697 [TBL] [Abstract][Full Text] [Related]
17. Translational genomics using Arabidopsis as a model enables the characterization of pennycress genes through forward and reverse genetics. Chopra R; Johnson EB; Daniels E; McGinn M; Dorn KM; Esfahanian M; Folstad N; Amundson K; Altendorf K; Betts K; Frels K; Anderson JA; Wyse DL; Sedbrook JC; David Marks M Plant J; 2018 Dec; 96(6):1093-1105. PubMed ID: 30394623 [TBL] [Abstract][Full Text] [Related]
18. The role of alanine synthesis and nitrate-induced nitric oxide production during hypoxia stress in Cucurbita pepo nectaries. Solhaug EM; Roy R; Venterea RT; Carter CJ Plant J; 2021 Feb; 105(3):580-599. PubMed ID: 33119149 [TBL] [Abstract][Full Text] [Related]
19. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Liu G; Thornburg RW Plant J; 2012 May; 70(3):377-88. PubMed ID: 22151247 [TBL] [Abstract][Full Text] [Related]
20. Histochemical, metabolic and ultrastructural changes in leaf patelliform nectaries explain extrafloral nectar synthesis and secretion in Clerodendrum chinense. Paul S; Mitra A Ann Bot; 2024 Apr; 133(4):621-642. PubMed ID: 38366151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]