BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29137634)

  • 1. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors.
    Sundström L; Larsson S; Jönsson LJ
    Appl Biochem Biotechnol; 2010 May; 161(1-8):106-15. PubMed ID: 19847383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YKL071W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of glycolaldehyde and furfural derived from lignocellulose.
    Wang H; Ouyang Y; Zhou C; Xiao D; Guo Y; Wu L; Li X; Gu Y; Xiang Q; Zhao K; Yu X; Zou L; Ma M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8405-8418. PubMed ID: 29034432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of overexpression of STB5 in Saccharomyces cerevisiae on fatty acid biosynthesis, physiology and transcriptome.
    Bergman A; Vitay D; Hellgren J; Chen Y; Nielsen J; Siewers V
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30924859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.
    Kim D; Hahn JS
    Appl Environ Microbiol; 2013 Aug; 79(16):5069-77. PubMed ID: 23793623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering.
    Hacısalihoğlu B; Holyavkin C; Topaloğlu A; Kısakesen Hİ; Çakar ZP
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30834929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.
    Fletcher E; Gao K; Mercurio K; Ali M; Baetz K
    Metab Eng; 2019 Mar; 52():98-109. PubMed ID: 30471359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production.
    Larochelle M; Drouin S; Robert F; Turcotte B
    Mol Cell Biol; 2006 Sep; 26(17):6690-701. PubMed ID: 16914749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.