These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29137706)

  • 21. Tandem mass spectrometry strategies for phosphoproteome analysis.
    Palumbo AM; Smith SA; Kalcic CL; Dantus M; Stemmer PM; Reid GE
    Mass Spectrom Rev; 2011; 30(4):600-25. PubMed ID: 21294150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Shot Capillary Zone Electrophoresis-Tandem Mass Spectrometry Produces over 4400 Phosphopeptide Identifications from a 220 ng Sample.
    Zhang Z; Hebert AS; Westphall MS; Coon JJ; Dovichi NJ
    J Proteome Res; 2019 Aug; 18(8):3166-3173. PubMed ID: 31180221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PhoPepMass: A database and search tool assisting human phosphorylation peptide identification from mass spectrometry data.
    Zhang M; Cui H; Chen L; Yu Y; Glocker MO; Xie L
    J Genet Genomics; 2018 Jul; 45(7):381-388. PubMed ID: 30055873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized fragmentation conditions for iTRAQ-labeled phosphopeptides.
    Linke D; Hung CW; Cassidy L; Tholey A
    J Proteome Res; 2013 Jun; 12(6):2755-63. PubMed ID: 23668714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets.
    Alcolea MP; Kleiner O; Cutillas PR
    J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examining factors that influence erroneous phosphorylation site localization via competing fragmentation and rearrangement reactions during ion trap CID-MS/MS and -MS(3.).
    Cui L; Reid GE
    Proteomics; 2013 Mar; 13(6):964-73. PubMed ID: 23335301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA.
    Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT
    J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot synthesis and multiple MS/MS fragmentation studies of phospholysine peptides.
    Zhao X; Fu S; Zhao Y; Ni F
    Rapid Commun Mass Spectrom; 2021 Nov; 35(22):e9186. PubMed ID: 34480769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated and high confidence protein phosphorylation site localization using complementary collision-activated dissociation and electron transfer dissociation tandem mass spectrometry.
    Hansen TA; Sylvester M; Jensen ON; Kjeldsen F
    Anal Chem; 2012 Nov; 84(22):9694-9. PubMed ID: 23061748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepFLR facilitates false localization rate control in phosphoproteomics.
    Zong Y; Wang Y; Yang Y; Zhao D; Wang X; Shen C; Qiao L
    Nat Commun; 2023 Apr; 14(1):2269. PubMed ID: 37080984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.
    Creese AJ; Smart J; Cooper HJ
    Anal Chem; 2013 May; 85(10):4836-43. PubMed ID: 23646896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphoproteomics with Activated Ion Electron Transfer Dissociation.
    Riley NM; Hebert AS; Dürnberger G; Stanek F; Mechtler K; Westphall MS; Coon JJ
    Anal Chem; 2017 Jun; 89(12):6367-6376. PubMed ID: 28383256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic.
    Jünger MA; Aebersold R
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):83-112. PubMed ID: 24902836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ABRF-PRG03: phosphorylation site determination.
    Arnott D; Gawinowicz MA; Grant RA; Neubert TA; Packman LC; Speicher KD; Stone K; Turck CW
    J Biomol Tech; 2003 Sep; 14(3):205-15. PubMed ID: 13678151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation.
    Nagaraj N; D'Souza RC; Cox J; Olsen JV; Mann M
    J Proteome Res; 2010 Dec; 9(12):6786-94. PubMed ID: 20873877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity.
    Jersie-Christensen RR; Sultan A; Olsen JV
    Methods Mol Biol; 2016; 1355():251-60. PubMed ID: 26584931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination.
    Kyono Y; Sugiyama N; Tomita M; Ishihama Y
    Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.