These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29137758)

  • 1. Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves.
    Luo X; Cao J; Yin H; Yan H; He L
    Ultrason Sonochem; 2018 Mar; 41():319-326. PubMed ID: 29137758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.
    Luo X; Cao J; He L; Wang H; Yan H; Qin Y
    Ultrason Sonochem; 2017 Jan; 34():839-846. PubMed ID: 27773311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suspension characteristics of water droplet in oil under ultrasonic standing waves.
    Luo X; Cao J; Ren J; Yan H; He L
    Ultrason Sonochem; 2017 Nov; 39():461-466. PubMed ID: 28732969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental study on the motion of water droplets in oil under ultrasonic irradiation.
    Luo X; He L; Wang H; Yan H; Qin Y
    Ultrason Sonochem; 2016 Jan; 28():110-117. PubMed ID: 26384889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of acoustic parameters for ultrasonic separation of emulsions with different physical properties.
    Luo X; Gong H; Yin H; He Z; He L
    Ultrason Sonochem; 2020 Nov; 68():105221. PubMed ID: 32590332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field.
    Wang H; Li X; Li Y; Geng X
    Ultrason Sonochem; 2017 May; 36():101-111. PubMed ID: 28069188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational and experimental study on acoustic pressure for ultrasonically formed oil-in-water emulsion.
    Tiong TJ; Chu JK; Lim LY; Tan KW; Hong Yap Y; Asli UA
    Ultrason Sonochem; 2019 Sep; 56():46-54. PubMed ID: 31101285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-in-oil emulsions separation using an ultrasonic standing wave coalescence chamber.
    Atehortúa CMG; Pérez N; Andrade MAB; Pereira LOV; Adamowski JC
    Ultrason Sonochem; 2019 Oct; 57():57-61. PubMed ID: 31208619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and chemical characteristics of ultrasonically-prepared water-in-diesel fuel: effects of ultrasonic horn position and water content.
    Kojima Y; Imazu H; Nishida K
    Ultrason Sonochem; 2014 Mar; 21(2):722-8. PubMed ID: 24207138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size.
    Gaikwad SG; Pandit AB
    Ultrason Sonochem; 2008 Apr; 15(4):554-563. PubMed ID: 17698396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the mechanisms of ultrasonic emulsification in the oil-water system and the role of gas bubbles.
    Wu WH; Eskin DG; Priyadarshi A; Subroto T; Tzanakis I; Zhai W
    Ultrason Sonochem; 2021 May; 73():105501. PubMed ID: 33676157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound assisted preparation of water in oil emulsions and their application in arsenic (V) removal from water in an emulsion liquid membrane process.
    Kiani S; Mousavi SM
    Ultrason Sonochem; 2013 Jan; 20(1):373-7. PubMed ID: 22749296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial pressure and phospholipid density at emulsion droplet interface using fluorescence microscopy.
    Delacotte J; Gourier C; Pincet F
    Colloids Surf B Biointerfaces; 2014 May; 117():545-8. PubMed ID: 24373642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation and separation of oil droplets by using asymmetric nano-orifice induced DC dielectrophoretic method.
    Zhao K; Li D
    J Colloid Interface Sci; 2018 Feb; 512():389-397. PubMed ID: 29080534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.
    Akamatsu K; Kanasugi S; Nakao S; Weitz DA
    Langmuir; 2015 Jun; 31(25):7166-72. PubMed ID: 26057203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical assessment of ultrasound supported coalescence of water droplets in crude oil.
    Adeyemi I; Meribout M; Khezzar L; Kharoua N; AlHammadi K
    Ultrason Sonochem; 2022 Aug; 88():106085. PubMed ID: 35779430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative approach to ultrasonic emulsion separation.
    Nii S; Kikumoto S; Tokuyama H
    Ultrason Sonochem; 2009 Jan; 16(1):145-9. PubMed ID: 18725183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.
    Arima S; Ueno S; Ogawa A; Sato K
    Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.