These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29137770)
1. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. Suo D; Govind B; Zhang S; Jing Y Ultrason Sonochem; 2018 Mar; 41():419-426. PubMed ID: 29137770 [TBL] [Abstract][Full Text] [Related]
2. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. Wang M; Zhou Y Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677 [TBL] [Abstract][Full Text] [Related]
3. Acoustic droplet vaporization and inertial cavitation thresholds and efficiencies of nanodroplets emulsions inside the focused region using a dual-frequency ring focused ultrasound. Xu S; Chang N; Wang R; Liu X; Guo S; Wang S; Zong Y; Wan M Ultrason Sonochem; 2018 Nov; 48():532-537. PubMed ID: 30080582 [TBL] [Abstract][Full Text] [Related]
5. GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal. Filonets T; Solovchuk M Ultrason Sonochem; 2022 Aug; 88():106056. PubMed ID: 35728380 [TBL] [Abstract][Full Text] [Related]
6. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound. Zhou Y; Gao XW J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209 [TBL] [Abstract][Full Text] [Related]
7. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus. Wang M; Lei Y; Zhou Y Ultrasonics; 2019 Jan; 91():134-149. PubMed ID: 30146323 [TBL] [Abstract][Full Text] [Related]
8. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy. Hockham N; Coussios CC; Arora M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364 [TBL] [Abstract][Full Text] [Related]
9. Promoting inertial cavitation by nonlinear frequency mixing in a bifrequency focused ultrasound beam. Saletes I; Gilles B; Bera JC Ultrasonics; 2011 Jan; 51(1):94-101. PubMed ID: 20637485 [TBL] [Abstract][Full Text] [Related]
10. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. Yin H; Chang N; Xu S; Wan M Ultrason Sonochem; 2016 Sep; 32():158-164. PubMed ID: 27150756 [TBL] [Abstract][Full Text] [Related]
11. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis. Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953 [TBL] [Abstract][Full Text] [Related]
12. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. Farny CH; Holt RG; Roy RA Ultrasound Med Biol; 2009 Apr; 35(4):603-15. PubMed ID: 19110368 [TBL] [Abstract][Full Text] [Related]
13. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. Tung YS; Choi JJ; Baseri B; Konofagou EE Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973 [TBL] [Abstract][Full Text] [Related]
14. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system. Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204 [TBL] [Abstract][Full Text] [Related]
15. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study. Suo D; Guo S; Lin W; Jiang X; Jing Y Phys Med Biol; 2015 Sep; 60(18):7403-18. PubMed ID: 26350754 [TBL] [Abstract][Full Text] [Related]
16. Passive spatial mapping of inertial cavitation during HIFU exposure. Gyöngy M; Coussios CC IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450 [TBL] [Abstract][Full Text] [Related]
17. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets. Chang N; Lu S; Qin D; Xu T; Han M; Wang S; Wan M Ultrason Sonochem; 2018 Jul; 45():57-64. PubMed ID: 29705325 [TBL] [Abstract][Full Text] [Related]
18. Inertial cavitation produced by pulsed ultrasound in controlled host media. Deng CX; Xu Q; Apfel RE; Holland CK J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1199-208. PubMed ID: 8759969 [TBL] [Abstract][Full Text] [Related]
19. Dual frequency cavitation event sensor with iodide dosimeter. Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909 [TBL] [Abstract][Full Text] [Related]
20. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Sokka SD; Gauthier TP; Hynynen K Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]