These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29137772)

  • 41. Chemical synthesis of hierarchical NiCo
    Kim DY; Ghodake GS; Maile NC; Kadam AA; Sung Lee D; Fulari VJ; Shinde SK
    Sci Rep; 2017 Aug; 7(1):9764. PubMed ID: 28852122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NiO@NiO and NiO@Co³O⁴ Hollow Core/Shell Composites for High-Performance Supercapacitor Electrodes.
    Fan M; Ren B; Yang X; Yu H; Wang L
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7785-7789. PubMed ID: 31196290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Novel Radiation Method for Preparing MnO₂/BC Monolith Hybrids with Outstanding Supercapacitance Performance.
    Yang F; Liu X; Mi R; Yuan L; Yang X; Zhong M; Fu Z; Wang C; Tang Y
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors.
    Raphael Ezeigwe E; Dong L; Wang J; Wang L; Yan W; Zhang J
    J Colloid Interface Sci; 2020 Aug; 574():140-151. PubMed ID: 32311536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications.
    Xiao X; Han B; Chen G; Wang L; Wang Y
    Sci Rep; 2017 Jan; 7():40167. PubMed ID: 28057915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.
    Zhou X; Xu B; Lin Z; Shu D; Ma L
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7250-4. PubMed ID: 25924398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.
    Gupta RK; Candler J; Palchoudhury S; Ramasamy K; Gupta BK
    Sci Rep; 2015 Oct; 5():15265. PubMed ID: 26482921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced electrochemical performance of Ce-MOF/h-CeO
    Baweja R; Verma M; Gautam S; Upreti S; Goyal N
    RSC Adv; 2024 May; 14(25):17855-17865. PubMed ID: 38832244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.
    Mu B; Zhang W; Shao S; Wang A
    Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applications.
    Humayun H; Begum B; Bilal S; Shah AUHA; Röse P
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.
    Konikkara N; Kennedy LJ; Vijaya JJ
    J Hazard Mater; 2016 Nov; 318():173-185. PubMed ID: 27420389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of compressible hydrogels as electrolyte materials for supercapacitor applications.
    Jain A; Ziai Y; Bochenek K; Manippady SR; Pierini F; Michalska M
    RSC Adv; 2023 Apr; 13(17):11503-11512. PubMed ID: 37063734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile synthesis of a Bi
    Wen J; Sun S; Zhang B; Shi N; Liao X; Yin G; Huang Z; Chen X; Pu X
    RSC Adv; 2019 Feb; 9(9):4693-4699. PubMed ID: 35514671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melamine-based metal-organic frameworks for high-performance supercapacitor applications.
    Vanaraj R; Daniel S; Mayakrishnan G; Govindarasu Gunasekaran K; Arumugam B; Babu CM; Kim SC
    J Colloid Interface Sci; 2024 Jul; 666():380-392. PubMed ID: 38603880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemically prepared La2Se3 nanocubes thin film for supercapacitor application.
    Patil SJ; Lokhande VC; Chodankar NR; Lokhande CD
    J Colloid Interface Sci; 2016 May; 469():318-324. PubMed ID: 26901380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cost-Effective Synthesis of Efficient CoWO
    Thiagarajan K; Balaji D; Madhavan J; Theerthagiri J; Lee SJ; Kwon KY; Choi MY
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33158013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Supercapacitor behaviour of manganese dioxide decorated mesoporous silica synthesized by a rapid sol-gel inverse micelle method.
    Pal A; Das T; Ghosh S; Nandi M
    Dalton Trans; 2020 Sep; 49(36):12716-12730. PubMed ID: 32959828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors.
    El-Gendy DM; Ghany NA; El Sherbini EE; Allam NK
    Sci Rep; 2017 Feb; 7():43104. PubMed ID: 28216668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.