These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29137774)

  • 21. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.
    Authier O; Ouhabaz H; Bedogni S
    Ultrason Sonochem; 2018 Jul; 45():17-28. PubMed ID: 29705309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM.
    Yang Y; Shan M; Kan X; Shangguan Y; Han Q
    Ultrason Sonochem; 2020 Apr; 62():104873. PubMed ID: 31806544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid.
    Thiemann A; Holsteyns F; CairĂ³s C; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy balance of high-energy stable acoustic cavitation within dual-frequency sonochemical reactor.
    Kerboua K; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105471. PubMed ID: 33571941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for liquid phase reactions during single bubble acoustic cavitation.
    Troia A; Madonna Ripa D; Lago S; Spagnolo R
    Ultrason Sonochem; 2004 Jul; 11(5):317-21. PubMed ID: 15157862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability mechanisms of oscillating vapor bubbles in acoustic fields.
    Zhang Y; Gao Y; Du X
    Ultrason Sonochem; 2018 Jan; 40(Pt A):808-814. PubMed ID: 28946489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of optimal seed bubble size on pressure amplitude at therapeutic pressure levels.
    Carvell KJ; Bigelow TA
    Ultrasonics; 2011 Feb; 51(2):115-22. PubMed ID: 20656313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quasiadiabatic approach for laser-induced single-bubble sonoluminescence.
    Sadighi-Bonabi R; Razeghi F; Ebrahimi H; Fallahi S; Lotfi E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016302. PubMed ID: 22400653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.
    Merouani S; Hamdaoui O; Haddad B
    Ultrason Sonochem; 2018 Mar; 41():143-155. PubMed ID: 29137737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissolved gas and ultrasonic cavitation--a review.
    Rooze J; Rebrov EV; Schouten JC; Keurentjes JT
    Ultrason Sonochem; 2013 Jan; 20(1):1-11. PubMed ID: 22705074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions.
    Ciawi E; Ashokkumar M; Grieser F
    J Phys Chem B; 2006 May; 110(20):9779-81. PubMed ID: 16706427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.