BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 29137888)

  • 1. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.
    Liu Y; Fan W; Xu Z; Peng W; Luo S
    Environ Pollut; 2018 May; 236():962-970. PubMed ID: 29137888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna.
    Zhang Y; Meng T; Shi L; Guo X; Si X; Yang R; Quan X
    Sci Total Environ; 2019 Feb; 649():163-171. PubMed ID: 30173026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanism study on toxicity of graphene oxide to Daphnia magna: Direct link between bioaccumulation and oxidative stress.
    Lv X; Yang Y; Tao Y; Jiang Y; Chen B; Zhu X; Cai Z; Li B
    Environ Pollut; 2018 Mar; 234():953-959. PubMed ID: 29665635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter.
    Fan W; Peng R; Li X; Ren J; Liu T; Wang X
    Water Res; 2016 Nov; 105():129-137. PubMed ID: 27611640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles.
    Mwaanga P; Carraway ER; van den Hurk P
    Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.
    Fan W; Cui M; Liu H; Wang C; Shi Z; Tan C; Yang X
    Environ Pollut; 2011 Mar; 159(3):729-34. PubMed ID: 21177008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.
    Cano AM; Maul JD; Saed M; Shah SA; Green MJ; Cañas-Carrell JE
    Environ Toxicol Chem; 2017 Aug; 36(8):2199-2204. PubMed ID: 28160491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water.
    Fan W; Zhang Y; Liu S; Li X; Li J
    J Hazard Mater; 2020 May; 389():122155. PubMed ID: 32004833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu(2+) on biotoxicity in Daphnia magna.
    Liu L; Fan W; Lu H; Xiao W
    Sci Rep; 2015 Aug; 5():11121. PubMed ID: 26242603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: A two generation study.
    Liu Y; Han W; Xu Z; Fan W; Peng W; Luo S
    Environ Pollut; 2018 Jun; 237():218-227. PubMed ID: 29486455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.
    Xiao Y; Peijnenburg WJGM; Chen G; Vijver MG
    Sci Total Environ; 2018 Jan; 610-611():1329-1335. PubMed ID: 28851153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of graphene oxide in mitigated toxicity of heavy metal ions on
    Ni L; Li Y
    RSC Adv; 2018 Dec; 8(72):41358-41367. PubMed ID: 35559328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and food concentration have limited influence on the mixture toxicity of copper and Microcystis aeruginosa to Daphnia magna.
    Hochmuth JD; Janssen CR; De Schamphelaere KA
    Environ Toxicol Chem; 2016 Mar; 35(3):742-9. PubMed ID: 26354710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined toxicity of copper and phenol derivatives to Daphnia magna: effect of complexation reaction.
    Kim KT; Lee YG; Kim SD
    Environ Int; 2006 May; 32(4):487-92. PubMed ID: 16386792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.
    Gillis PL; Wood CM; Ranville JF; Chow-Fraser P
    Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.
    Tao X; He Y; Fortner JD; Chen Y; Hughes JB
    Chemosphere; 2013 Aug; 92(9):1245-52. PubMed ID: 23755985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna.
    Muyssen BT; Janssen CR
    Ecotoxicol Environ Saf; 2007 Nov; 68(3):436-42. PubMed ID: 17258805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of Surface Coating to Accumulation Dynamics and Acute Toxicity of Copper Nanomaterials and Dissolved Copper in Daphnia magna.
    Gajda-Meissner Z; Matyja K; Brown DM; Hartl MGJ; Fernandes TF
    Environ Toxicol Chem; 2020 Feb; 39(2):287-299. PubMed ID: 31610609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.