These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29137930)

  • 1. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells.
    Yang W; Rossi R; Tian Y; Kim KY; Logan BE
    Bioresour Technol; 2018 Feb; 249():1080-1084. PubMed ID: 29137930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater.
    Rossi R; Yang W; Zikmund E; Pant D; Logan BE
    Bioresour Technol; 2018 Oct; 265():200-206. PubMed ID: 29902652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of cleaning procedures on restoring cathode performance for microbial fuel cells treating domestic wastewater.
    Rossi R; Wang X; Yang W; Logan BE
    Bioresour Technol; 2019 Oct; 290():121759. PubMed ID: 31323515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.
    Hoskins DL; Zhang X; Hickner MA; Logan BE
    Bioresour Technol; 2014 Nov; 172():156-161. PubMed ID: 25260178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of expanded polystyrene as a separator in microbial fuel cell.
    Mathuriya AS; Pant D
    Environ Technol; 2019 Jul; 40(16):2052-2061. PubMed ID: 29384429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of clayware separator-electrode assembly for treatment of wastewater in microbial fuel cells.
    Chatterjee P; Ghangrekar MM
    Appl Biochem Biotechnol; 2014 May; 173(2):378-90. PubMed ID: 24648141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.
    Yang W; Watson VJ; Logan BE
    Environ Sci Technol; 2016 Aug; 50(16):8904-9. PubMed ID: 27414751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer separators for high-power, high-efficiency microbial fuel cells.
    Chen G; Wei B; Luo Y; Logan BE; Hickner MA
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6454-7. PubMed ID: 23167669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.
    Wang Z; Lim B
    Environ Technol; 2017 Apr; 38(8):979-984. PubMed ID: 27456909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells.
    An J; Li N; Wan L; Zhou L; Du Q; Li T; Wang X
    Water Res; 2017 Oct; 123():369-377. PubMed ID: 28686939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.
    Yang W; Kim KY; Logan BE
    Bioresour Technol; 2015 Dec; 197():318-22. PubMed ID: 26342345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater.
    Christgen B; Scott K; Dolfing J; Head IM; Curtis TP
    PLoS One; 2015; 10(8):e0136108. PubMed ID: 26305330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.
    Yang W; Logan BE
    ChemSusChem; 2016 Aug; 9(16):2226-32. PubMed ID: 27416965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separator characteristics for increasing performance of microbial fuel cells.
    Zhang X; Cheng S; Wang X; Huang X; Logan BE
    Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.
    Zhang X; Cheng S; Liang P; Huang X; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):372-5. PubMed ID: 20566288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells.
    Chang CC; Li SL; Hu A; Yu CP
    Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell.
    Vempaty A; Mathuriya AS
    Environ Technol; 2023 Aug; 44(18):2713-2724. PubMed ID: 35138220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells.
    Li C; Yi K; Hu S; Yang W
    Environ Sci Ecotechnol; 2023 Jul; 15():100251. PubMed ID: 36923605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.