BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29137997)

  • 1. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines.
    Dekamin MG; Karimi Z; Latifidoost Z; Ilkhanizadeh S; Daemi H; Naimi-Jamal MR; Barikani M
    Int J Biol Macromol; 2018 Mar; 108():1273-1280. PubMed ID: 29137997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives.
    Dekamin MG; Peyman SZ; Karimi Z; Javanshir S; Naimi-Jamal MR; Barikani M
    Int J Biol Macromol; 2016 Jun; 87():172-9. PubMed ID: 26845480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes.
    Ilkhanizadeh S; Khalafy J; Dekamin MG
    Int J Biol Macromol; 2019 Nov; 140():605-613. PubMed ID: 31437499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Hydrogenation of Macroalgae-Derived Alginic Acid into Sugar Alcohols.
    Ban C; Jeon W; Woo HC; Kim DH
    ChemSusChem; 2017 Dec; 10(24):4891-4898. PubMed ID: 28984086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation.
    Cherkupally SR; Mekala R
    Chem Pharm Bull (Tokyo); 2008 Jul; 56(7):1002-4. PubMed ID: 18591819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite.
    Das B; Ravikanth B; Ramu R; Vittal Rao B
    Chem Pharm Bull (Tokyo); 2006 Jul; 54(7):1044-5. PubMed ID: 16819229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines.
    Evans CG; Gestwicki JE
    Org Lett; 2009 Jul; 11(14):2957-9. PubMed ID: 19527003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimesic acid-functionalized chitosan: A novel and efficient multifunctional organocatalyst for green synthesis of polyhydroquinolines and acridinediones under mild conditions.
    Beiranvand R; Dekamin MG
    Heliyon; 2023 Jun; 9(6):e16315. PubMed ID: 37260895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of amidated derivatives of alginic acid.
    Taubner T; Marounek M; Synytsya A
    Int J Biol Macromol; 2017 Oct; 103():202-207. PubMed ID: 28526341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "conformational changes and aggregation of alginic acid as determined by fluorescence correlation spectroscopy".
    Christensen BE; Skjåk-Braek G; Smidsrød O
    Biomacromolecules; 2007 Oct; 8(10):3279; discussion 3280. PubMed ID: 17725320
    [No Abstract]   [Full Text] [Related]  

  • 12. FT NIR Raman studies of alginic acid-benzimidazole polymer composite.
    Połomska M; Pogorzelec-Glaser K; Pawlaczyk C; Pietraszko A
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(4):797-800. PubMed ID: 20961802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system.
    Guo R; Zhang L; Jiang Z; Cao Y; Ding Y; Jiang X
    Biomacromolecules; 2007 Mar; 8(3):843-50. PubMed ID: 17291037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.
    Chhatbar MU; Meena R; Prasad K; Chejara DR; Siddhanta AK
    Carbohydr Res; 2011 Apr; 346(5):527-33. PubMed ID: 21333275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of ammonium alginate-derived nanofibers carrying diverse therapeutic cargo.
    Pegg CE; Jones GH; Athauda TJ; Ozer RR; Chalker JM
    Chem Commun (Camb); 2014 Jan; 50(2):156-8. PubMed ID: 24132070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial performance of alginic acid coating on polyethylene film.
    Karbassi E; Asadinezhad A; Lehocký M; Humpolíček P; Vesel A; Novák I; Sáha P
    Int J Mol Sci; 2014 Aug; 15(8):14684-96. PubMed ID: 25196604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of new derivatives of alginic acid and evaluation of their iron(III)-crosslinked beads as potential controlled release matrices.
    Abulateefeh SR; Khanfar MA; Al Bakain RZ; Taha MO
    Pharm Dev Technol; 2014 Nov; 19(7):856-67. PubMed ID: 24032476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.
    Tudorache M; Gheorghe A; Negoi A; Enache M; Maria GM; Parvulescu VI
    Carbohydr Polym; 2016 Nov; 152():726-733. PubMed ID: 27516324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel metal coordination enabled in carboxylated alginic acid for effective fluoride removal.
    Pandi K; Viswanathan N
    Carbohydr Polym; 2015 Mar; 118():242-9. PubMed ID: 25542130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid.
    Jeon C; Je Yoo Y; Hoell WH
    Bioresour Technol; 2005 Jan; 96(1):15-9. PubMed ID: 15364075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.