BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29138002)

  • 1. The Mechanism of HdeA Unfolding and Chaperone Activation.
    Salmon L; Stull F; Sayle S; Cato C; Akgül Ş; Foit L; Ahlstrom LS; Eisenmesser EZ; Al-Hashimi HM; Bardwell JCA; Horowitz S
    J Mol Biol; 2018 Jan; 430(1):33-40. PubMed ID: 29138002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HdeB functions as an acid-protective chaperone in bacteria.
    Dahl JU; Koldewey P; Salmon L; Horowitz S; Bardwell JC; Jakob U
    J Biol Chem; 2015 Jan; 290(1):65-75. PubMed ID: 25391835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of a conditionally disordered pH-sensing chaperone.
    Ahlstrom LS; Law SM; Dickson A; Brooks CL
    J Mol Biol; 2015 Apr; 427(8):1670-80. PubMed ID: 25584862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone activation by unfolding.
    Foit L; George JS; Zhang BW; Brooks CL; Bardwell JC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):E1254-62. PubMed ID: 23487787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation.
    Garrison MA; Crowhurst KA
    Protein Sci; 2014 Feb; 23(2):167-78. PubMed ID: 24375557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH.
    Widjaja MA; Gomez JS; Benson JM; Crowhurst KA
    Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140576. PubMed ID: 33253897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress.
    Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C
    Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and folding of the small bacterial chaperone HdeA.
    Ahlstrom LS; Dickson A; Brooks CL
    J Phys Chem B; 2013 Oct; 117(42):13219-25. PubMed ID: 23738772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex role of the N-terminus and acidic residues of HdeA as pH-dependent switches in its chaperone function.
    Pacheco S; Widjaja MA; Gomez JS; Crowhurst KA; Abrol R
    Biophys Chem; 2020 Sep; 264():106406. PubMed ID: 32593908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone.
    Yu XC; Hu Y; Ding J; Li H; Jin C
    J Biol Chem; 2019 Mar; 294(9):3192-3206. PubMed ID: 30573682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations.
    Socher E; Sticht H
    J Phys Chem B; 2016 Nov; 120(46):11845-11855. PubMed ID: 27787971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli HdeB is an acid stress chaperone.
    Kern R; Malki A; Abdallah J; Tagourti J; Richarme G
    J Bacteriol; 2007 Jan; 189(2):603-10. PubMed ID: 17085547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing pH-dependent dissociation of HdeA dimers.
    Zhang BW; Brunetti L; Brooks CL
    J Am Chem Soc; 2011 Dec; 133(48):19393-8. PubMed ID: 22026371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria.
    Wu YE; Hong W; Liu C; Zhang L; Chang Z
    Biochem J; 2008 Jun; 412(2):389-97. PubMed ID: 18271752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-denatured small heat shock protein HdeA from
    Miyawaki S; Uemura Y; Hongo K; Kawata Y; Mizobata T
    J Biol Chem; 2019 Feb; 294(5):1590-1601. PubMed ID: 30530490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HdeB chaperone activity is coupled to its intrinsic dynamic properties.
    Ding J; Yang C; Niu X; Hu Y; Jin C
    Sci Rep; 2015 Nov; 5():16856. PubMed ID: 26593705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding.
    Tapley TL; Körner JL; Barge MT; Hupfeld J; Schauerte JA; Gafni A; Jakob U; Bardwell JC
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5557-62. PubMed ID: 19321422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.
    Malki A; Le HT; Milles S; Kern R; Caldas T; Abdallah J; Richarme G
    J Biol Chem; 2008 May; 283(20):13679-87. PubMed ID: 18359765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chaperone-Active State of HdeB at pH 4 Arises from Its Conformational Rearrangement and Enhanced Stability Instead of Surface Hydrophobicity.
    Thapliyal C; Mishra R
    Biochemistry; 2024 May; 63(9):1147-1161. PubMed ID: 38640496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation.
    Hong W; Jiao W; Hu J; Zhang J; Liu C; Fu X; Shen D; Xia B; Chang Z
    J Biol Chem; 2005 Jul; 280(29):27029-34. PubMed ID: 15911614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.