BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29138026)

  • 1. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC
    Gade CR; Sharma NK
    Bioorg Med Chem Lett; 2017 Dec; 27(24):5424-5428. PubMed ID: 29138026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PNA-DNA hybrid I-motif: implications for sugar-sugar contacts in i-motif tetramerization.
    Modi S; Wani AH; Krishnan Y
    Nucleic Acids Res; 2006; 34(16):4354-63. PubMed ID: 16936319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex.
    Paul A; Sengupta P; Krishnan Y; Ladame S
    Chemistry; 2008; 14(28):8682-9. PubMed ID: 18668497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PNA C-C+ i-motif: superior stability of PNA TC8 tetraplexes compared to DNA TC8 tetraplexes at low pH.
    Sharma NK; Ganesh KN
    Chem Commun (Camb); 2005 Sep; (34):4330-2. PubMed ID: 16113738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aminoethylprolyl (aep) PNA: mixed purine/pyrimidine oligomers and binding orientation preferences for PNA:DNA duplex formation.
    D'Costa M; Kumar V; Ganesh KN
    Org Lett; 2001 May; 3(9):1281-4. PubMed ID: 11348214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced stability of G-quadruplexes from conformationally constrained aep-PNA backbone.
    Sharma NK; Ganesh KN
    Org Biomol Chem; 2011 Feb; 9(3):725-9. PubMed ID: 21076749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a PNA2-DNA2 hybrid quadruplex.
    Datta B; Schmitt C; Armitage BA
    J Am Chem Soc; 2003 Apr; 125(14):4111-8. PubMed ID: 12670232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadruplex formation by a guanine-rich PNA oligomer.
    Datta B; Bier ME; Roy S; Armitage BA
    J Am Chem Soc; 2005 Mar; 127(12):4199-207. PubMed ID: 15783201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterization of a triplex DNA-PNA/DNA/DNA.
    Petraccone L; Erra E; Messere A; Montesarchio D; Piccialli G; De Napoli L; Barone G; Giancola C
    Biopolymers; 2004 Mar; 73(4):434-42. PubMed ID: 14991660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA.
    Marin VL; Armitage BA
    Biochemistry; 2006 Feb; 45(6):1745-54. PubMed ID: 16460021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positional effect of single bulge nucleotide on PNA(peptide nucleic acid)/DNA hybrid stability.
    Sugimoto N; Yamamoto K; Satoh N
    Nucleic Acids Symp Ser; 1999; (42):95-6. PubMed ID: 10780396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism study of DNA binding by a potential anticancer peptide nucleic acid targeted against the MYCN oncogene.
    Faccini A; Tortori A; Tedeschi T; Sforza S; Tonelli R; Pession A; Corradini R; Marchelli R
    Chirality; 2008 Mar; 20(3-4):494-500. PubMed ID: 17963203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and hybridization properties of DNA-PNA chimeras carrying 5-bromouracil and 5-methylcytosine.
    Ferrer E; Shevchenko A; Eritja R
    Bioorg Med Chem; 2000 Feb; 8(2):291-7. PubMed ID: 10722151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of PNA containing 8-aza-7-deazaadenine on structure stability and binding affinity of PNA·DNA duplex: insights from thermodynamics, counter ion, hydration and molecular dynamics analysis.
    Gupta SK; Sur S; Prasad Ojha R; Tandon V
    Mol Biosyst; 2013 Jul; 9(7):1958-71. PubMed ID: 23636232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PNA forms an i-motif.
    Krishnan-Ghosh Y; Stephens E; Balasubramanian S
    Chem Commun (Camb); 2005 Nov; (42):5278-80. PubMed ID: 16244727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-PNA: peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone.
    Sugiyama T; Imamura Y; Demizu Y; Kurihara M; Takano M; Kittaka A
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7317-20. PubMed ID: 22050888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoethylprolyl peptide nucleic acids (aepPNA): chiral PNA analogues that form highly stable DNA:aepPNA2 triplexes.
    D'Costa M; Kumar VA; Ganesh KN
    Org Lett; 1999 Nov; 1(10):1513-6. PubMed ID: 10836017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide nucleic acid-DNA duplexes containing the universal base 3-nitropyrrole.
    Zhang BP; Egholm M; Paul N; Pingle M; Bergstrom DE
    Methods; 2001 Feb; 23(2):132-40. PubMed ID: 11181032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage of proton binding to the thermal dissociation of triple helix complex.
    Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C
    Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.