BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 29138306)

  • 1. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,
    Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris.
    Zhou A; Hillesland KL; He Z; Schackwitz W; Tu Q; Zane GM; Ma Q; Qu Y; Stahl DA; Wall JD; Hazen TC; Fields MW; Arkin AP; Zhou J
    ISME J; 2015 Nov; 9(11):2360-72. PubMed ID: 25848870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution.
    Zhou A; Baidoo E; He Z; Mukhopadhyay A; Baumohl JK; Benke P; Joachimiak MP; Xie M; Song R; Arkin AP; Hazen TC; Keasling JD; Wall JD; Stahl DA; Zhou J
    ISME J; 2013 Sep; 7(9):1790-802. PubMed ID: 23575373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations.
    Shi W; Ma Q; Pan F; Fan Y; Kempher ML; Ning D; Qu Y; Wall JD; Zhou A; Zhou J
    mSystems; 2021 Jun; 6(3):e0049321. PubMed ID: 34061571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Genetic and Physiological Divergence on the Evolution of a Sulfate-Reducing Bacterium under Conditions of Elevated Temperature.
    Kempher ML; Tao X; Song R; Wu B; Stahl DA; Wall JD; Arkin AP; Zhou A; Zhou J
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris.
    Wu B; Liu F; Zhou A; Li J; Shu L; Kempher ML; Yang X; Ning D; Pan F; Zane GM; Wall JD; Van Nostrand JD; Juneau P; Chen S; Yan Q; Zhou J; He Z
    ISME J; 2020 Nov; 14(11):2862-2876. PubMed ID: 32934357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation.
    He Z; Zhou A; Baidoo E; He Q; Joachimiak MP; Benke P; Phan R; Mukhopadhyay A; Hemme CL; Huang K; Alm EJ; Fields MW; Wall J; Stahl D; Hazen TC; Keasling JD; Arkin AP; Zhou J
    Appl Environ Microbiol; 2010 Mar; 76(5):1574-86. PubMed ID: 20038696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by
    De León KB; Zane GM; Trotter VV; Krantz GP; Arkin AP; Butland GP; Walian PJ; Fields MW; Wall JD
    mBio; 2017 Oct; 8(5):. PubMed ID: 29042504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach.
    Mukhopadhyay A; He Z; Alm EJ; Arkin AP; Baidoo EE; Borglin SC; Chen W; Hazen TC; He Q; Holman HY; Huang K; Huang R; Joyner DC; Katz N; Keller M; Oeller P; Redding A; Sun J; Wall J; Wei J; Yang Z; Yen HC; Zhou J; Keasling JD
    J Bacteriol; 2006 Jun; 188(11):4068-78. PubMed ID: 16707698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris.
    He Q; He Z; Joyner DC; Joachimiak M; Price MN; Yang ZK; Yen HC; Hemme CL; Chen W; Fields MM; Stahl DA; Keasling JD; Keller M; Arkin AP; Hazen TC; Wall JD; Zhou J
    ISME J; 2010 Nov; 4(11):1386-97. PubMed ID: 20445634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium.
    Pellerin A; Anderson-Trocmé L; Whyte LG; Zane GM; Wall JD; Wing BA
    Appl Environ Microbiol; 2015 Apr; 81(8):2676-89. PubMed ID: 25662968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.
    Clark ME; He Z; Redding AM; Joachimiak MP; Keasling JD; Zhou JZ; Arkin AP; Mukhopadhyay A; Fields MW
    BMC Genomics; 2012 Apr; 13():138. PubMed ID: 22507456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion.
    Clark ME; He Q; He Z; Huang KH; Alm EJ; Wan XF; Hazen TC; Arkin AP; Wall JD; Zhou JZ; Fields MW
    Appl Environ Microbiol; 2006 Aug; 72(8):5578-88. PubMed ID: 16885312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutualistic growth of the sulfate-reducer Desulfovibrio vulgaris Hildenborough with different carbohydrates.
    Santana MM; Portillo MC; Gonzalez JM
    Mikrobiologiia; 2012; 81(6):720-5. PubMed ID: 23610921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Lee MH; Caffrey SM; Voordouw JK; Voordouw G
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1109-18. PubMed ID: 20437234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid.
    Gao SH; Ho JY; Fan L; Nouwens A; Hoelzle RD; Schulz B; Guo J; Zhou J; Yuan Z; Bond PL
    Sci Total Environ; 2019 Jul; 672():625-633. PubMed ID: 30974354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
    Heidelberg JF; Seshadri R; Haveman SA; Hemme CL; Paulsen IT; Kolonay JF; Eisen JA; Ward N; Methe B; Brinkac LM; Daugherty SC; Deboy RT; Dodson RJ; Durkin AS; Madupu R; Nelson WC; Sullivan SA; Fouts D; Haft DH; Selengut J; Peterson JD; Davidsen TM; Zafar N; Zhou L; Radune D; Dimitrov G; Hance M; Tran K; Khouri H; Gill J; Utterback TR; Feldblyum TV; Wall JD; Voordouw G; Fraser CM
    Nat Biotechnol; 2004 May; 22(5):554-9. PubMed ID: 15077118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O
    Schoeffler M; Gaudin AL; Ramel F; Valette O; Denis Y; Hania WB; Hirschler-Réa A; Dolla A
    Environ Microbiol; 2019 Jan; 21(1):360-373. PubMed ID: 30394641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.