These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29138779)

  • 41. Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes.
    Wang L; Luo Z; Xu H; Piao N; Chen Z; Tian G; He X
    RSC Adv; 2019 Dec; 9(71):41837-41846. PubMed ID: 35541581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation Studies of Nonaqueous Lithium Ion Battery Electrolytes.
    Lim J; Lee KK; Liang C; Park KH; Kim M; Kwak K; Cho M
    J Phys Chem B; 2019 Aug; 123(31):6651-6663. PubMed ID: 31074985
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ionic conductivity and 1H, 7Li, and 19F NMR studies on diffusion coefficients and local motions.
    Hayamizu K; Tsuzuki S; Seki S; Ohno Y; Miyashiro H; Kobayashi Y
    J Phys Chem B; 2008 Jan; 112(4):1189-97. PubMed ID: 18179199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Li-O
    Kwon HM; Thomas ML; Tatara R; Oda Y; Kobayashi Y; Nakanishi A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6014-6021. PubMed ID: 28121136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combined NMR and molecular dynamics modeling study of transport properties in sulfonamide based deep eutectic lithium electrolytes: LiTFSI based binary systems.
    Pauric AD; Halalay IC; Goward GR
    Phys Chem Chem Phys; 2016 Mar; 18(9):6657-67. PubMed ID: 26871506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.
    Kraft V; Grützke M; Weber W; Menzel J; Wiemers-Meyer S; Winter M; Nowak S
    J Chromatogr A; 2015 Aug; 1409():201-9. PubMed ID: 26209196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?
    Ueno K; Yoshida K; Tsuchiya M; Tachikawa N; Dokko K; Watanabe M
    J Phys Chem B; 2012 Sep; 116(36):11323-31. PubMed ID: 22897246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anion Coordination Characteristics of Ion-pair Complexes in Highly Concentrated Aqueous Lithium Bis(trifluoromethanesulfonyl)amide Electrolytes.
    Tsurumura T; Hashimoto Y; Morita M; Umebayashi Y; Fujii K
    Anal Sci; 2019 Mar; 35(3):289-294. PubMed ID: 30393238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery electrolytes.
    Åvall G; Johansson P
    J Chem Phys; 2020 Jun; 152(23):234104. PubMed ID: 32571038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adiponitrile-Lithium Bis(trimethylsulfonyl)imide Solutions as Alkyl Carbonate-free Electrolytes for Li
    Farhat D; Ghamouss F; Maibach J; Edström K; Lemordant D
    Chemphyschem; 2017 May; 18(10):1333-1344. PubMed ID: 28231422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of the solvation structure and dynamics of the lithium ion in linear organic carbonates with different alkyl chain lengths.
    Fulfer KD; Kuroda DG
    Phys Chem Chem Phys; 2017 Sep; 19(36):25140-25150. PubMed ID: 28884183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4].
    Haskins JB; Bennett WR; Wu JJ; Hernández DM; Borodin O; Monk JD; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2014 Sep; 118(38):11295-309. PubMed ID: 25159701
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.
    Cresce AV; Russell SM; Borodin O; Allen JA; Schroeder MA; Dai M; Peng J; Gobet MP; Greenbaum SG; Rogers RE; Xu K
    Phys Chem Chem Phys; 2016 Dec; 19(1):574-586. PubMed ID: 27918030
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Viscosity and carbon dioxide solubility for LiPF6, LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect.
    Dougassa YR; Jacquemin J; El Ouatani L; Tessier C; Anouti M
    J Phys Chem B; 2014 Apr; 118(14):3973-80. PubMed ID: 24634992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anion Donicity of Liquid Electrolytes for Lithium Carbon Fluoride Batteries.
    Wang X; Song Z; Wu H; Yu H; Feng W; Armand M; Huang X; Zhou Z; Zhang H
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202211623. PubMed ID: 36165574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer.
    Morioka T; Nakano K; Tominaga Y
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery.
    Wang Q; Sun J; Chen C
    J Hazard Mater; 2009 Aug; 167(1-3):1209-14. PubMed ID: 19261386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery.
    Carbone L; Di Lecce D; Gobet M; Munoz S; Devany M; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2017 May; 9(20):17085-17095. PubMed ID: 28440629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.
    Shakourian-Fard M; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2016 Sep; 17(18):2916-30. PubMed ID: 27257715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of low-molecular-weight poly(ethylene glycol) (PEG) plasticizers on the transport properties of lithium fluorosulfonimide ionic melt electrolytes.
    Geiculescu OE; Hallac BB; Rajagopal RV; Creager SE; DesMarteau DD; Borodin O; Smith GD
    J Phys Chem B; 2014 May; 118(19):5135-43. PubMed ID: 24773589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.