These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Analysis of Organization of the Interactome Using Dominating Sets: A Case Study on Cell Cycle Interaction Networks. Zheng H; Wang C; Wang H IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):282-289. PubMed ID: 28368806 [TBL] [Abstract][Full Text] [Related]
25. Analyzing biological data using R: methods for graphs and networks. Le Meur N; Gentleman R Methods Mol Biol; 2012; 804():343-73. PubMed ID: 22144163 [TBL] [Abstract][Full Text] [Related]
26. Learning the structure of protein-protein interaction networks. Kuchaiev O; Przulj N Pac Symp Biocomput; 2009; ():39-50. PubMed ID: 19209694 [TBL] [Abstract][Full Text] [Related]
27. Protein networking: insights into global functional organization of proteomes. Pieroni E; de la Fuente van Bentem S; Mancosu G; Capobianco E; Hirt H; de la Fuente A Proteomics; 2008 Feb; 8(4):799-816. PubMed ID: 18297653 [TBL] [Abstract][Full Text] [Related]
28. Explore the hidden treasure in protein-protein interaction networks - an iterative model for predicting protein functions. Wang D; Hou J J Bioinform Comput Biol; 2015 Oct; 13(5):1550026. PubMed ID: 26449174 [TBL] [Abstract][Full Text] [Related]
30. Predicting Protein Functions by Using Unbalanced Random Walk Algorithm on Three Biological Networks. Peng W; Li M; Chen L; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):360-369. PubMed ID: 28368814 [TBL] [Abstract][Full Text] [Related]
31. Detecting protein complexes based on relevancy from protein interaction networks. Yao HX; Yang Y; Li XL Interdiscip Sci; 2013 Sep; 5(3):167-74. PubMed ID: 24307408 [TBL] [Abstract][Full Text] [Related]
32. Temporal Genetic Modifications after Controlled Cortical Impact--Understanding Traumatic Brain Injury through a Systematic Network Approach. Wong YH; Wu CC; Wu JC; Lai HY; Chen KY; Jheng BR; Chen MC; Chang TH; Chen BS Int J Mol Sci; 2016 Feb; 17(2):216. PubMed ID: 26861311 [TBL] [Abstract][Full Text] [Related]
33. Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell. De Las Rivas J; Fontanillo C Brief Funct Genomics; 2012 Nov; 11(6):489-96. PubMed ID: 22908212 [TBL] [Abstract][Full Text] [Related]
34. Clustering and overlapping modules detection in PPI network based on IBFO. Lei X; Wu S; Ge L; Zhang A Proteomics; 2013 Jan; 13(2):278-90. PubMed ID: 23229795 [TBL] [Abstract][Full Text] [Related]
35. Generation and Interpretation of Context-Specific Human Protein-Protein Interaction Networks with HIPPIE. Alanis-Lobato G; Schaefer MH Methods Mol Biol; 2020; 2074():135-144. PubMed ID: 31583636 [TBL] [Abstract][Full Text] [Related]
36. Identification of functional modules using network topology and high-throughput data. Ulitsky I; Shamir R BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515 [TBL] [Abstract][Full Text] [Related]
37. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features. Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895 [TBL] [Abstract][Full Text] [Related]
38. Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding. Zhu L; Deng SP; You ZH; Huang DS IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):345-352. PubMed ID: 28368812 [TBL] [Abstract][Full Text] [Related]
39. Practical use of BiNoM: a biological network manager software. Bonnet E; Calzone L; Rovera D; Stoll G; Barillot E; Zinovyev A Methods Mol Biol; 2013; 1021():127-46. PubMed ID: 23715983 [TBL] [Abstract][Full Text] [Related]
40. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks. Chen B; Fan W; Liu J; Wu FX Brief Bioinform; 2014 Mar; 15(2):177-94. PubMed ID: 23780996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]