BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29139123)

  • 1. New insights into the mechanisms of phytochrome-cryptochrome coaction.
    Wang Q; Liu Q; Wang X; Zuo Z; Oka Y; Lin C
    New Phytol; 2018 Jan; 217(2):547-551. PubMed ID: 29139123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Wang X; Wang Q; Han YJ; Liu Q; Gu L; Yang Z; Su J; Liu B; Zuo Z; He W; Wang J; Liu B; Matsui M; Kim JI; Oka Y; Lin C
    Plant J; 2017 Nov; 92(3):426-436. PubMed ID: 28833729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPA proteins: SPAnning the gap between visible light and gene expression.
    Menon C; Sheerin DJ; Hiltbrunner A
    Planta; 2016 Aug; 244(2):297-312. PubMed ID: 27100111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2.
    Liu Q; Wang Q; Deng W; Wang X; Piao M; Cai D; Li Y; Barshop WD; Yu X; Zhou T; Liu B; Oka Y; Wohlschlegel J; Zuo Z; Lin C
    Nat Commun; 2017 May; 8():15234. PubMed ID: 28492234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Jia KP; Luo Q; He SB; Lu XD; Yang HQ
    Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
    Guo H; Mockler T; Duong H; Lin C
    Science; 2001 Jan; 291(5503):487-90. PubMed ID: 11161203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis.
    Chen S; Lory N; Stauber J; Hoecker U
    PLoS Genet; 2015 Sep; 11(9):e1005516. PubMed ID: 26368289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the photocycle-how cryptochromes regulate photoresponses in plants?
    Wang Q; Zuo Z; Wang X; Liu Q; Gu L; Oka Y; Lin C
    Curr Opin Plant Biol; 2018 Oct; 45(Pt A):120-126. PubMed ID: 29913346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COP1 regulates plant growth and development in response to light at the post-translational level.
    Kim JY; Song JT; Seo HS
    J Exp Bot; 2017 Oct; 68(17):4737-4748. PubMed ID: 28992300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.
    Hirose F; Inagaki N; Hanada A; Yamaguchi S; Kamiya Y; Miyao A; Hirochika H; Takano M
    Plant Cell Physiol; 2012 Sep; 53(9):1570-82. PubMed ID: 22764280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching for the mechanism of signalling by plant photoreceptor cryptochrome.
    Müller P; Bouly JP
    FEBS Lett; 2015 Jan; 589(2):189-92. PubMed ID: 25500270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light.
    Usami T; Mochizuki N; Kondo M; Nishimura M; Nagatani A
    Plant Cell Physiol; 2004 Dec; 45(12):1798-808. PubMed ID: 15653798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    Holtkotte X; Ponnu J; Ahmad M; Hoecker U
    PLoS Genet; 2017 Oct; 13(10):e1007044. PubMed ID: 28991901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light-induced phosphorylation of Arabidopsis cryptochrome 1 is essential for its photosensitivity.
    Gao L; Liu Q; Zhong M; Zeng N; Deng W; Li Y; Wang D; Liu S; Wang Q
    J Integr Plant Biol; 2022 Sep; 64(9):1724-1738. PubMed ID: 35894630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana.
    Poppe C; Sweere U; Drumm-Herrel H; Schäfer E
    Plant J; 1998 Nov; 16(4):465-71. PubMed ID: 9881166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light.
    de Wit M; Keuskamp DH; Bongers FJ; Hornitschek P; Gommers CMM; Reinen E; Martínez-Cerón C; Fankhauser C; Pierik R
    Curr Biol; 2016 Dec; 26(24):3320-3326. PubMed ID: 27889265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling.
    Duek PD; Fankhauser C
    Plant J; 2003 Jun; 34(6):827-36. PubMed ID: 12795702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.
    Yang HQ; Tang RH; Cashmore AR
    Plant Cell; 2001 Dec; 13(12):2573-87. PubMed ID: 11752373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome phosphorylation in plant light signaling.
    Kim JI; Park JE; Zarate X; Song PS
    Photochem Photobiol Sci; 2005 Sep; 4(9):681-7. PubMed ID: 16121277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.