BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29139158)

  • 1. Macro-anatomical and morphometric studies of the hindlimb of grasscutter (Thryonomys swinderianus, Temminck-1827).
    Onwuama KT; Ojo SA; Hambolu JO; Dzenda T; Zakari FO; Salami SO
    Anat Histol Embryol; 2018 Feb; 47(1):21-27. PubMed ID: 29139158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteology and radiology of the Maned Wolf (Chrysocyon brachyurus) pelvic limb.
    Siqueira RC; Rahal SC; Inamassu LR; Mamprim MJ; Felix M; Castilho MS; Mesquita LR; Ribeiro VL; Teixeira CR; Rassy FB
    Anat Histol Embryol; 2017 Dec; 46(6):572-581. PubMed ID: 28940671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Macroscopic presentation of the bones of the pelvic limb of Pudu pudu (Molina 1782)].
    Butendieck E; Wissdorf H
    Gegenbaurs Morphol Jahrb; 1988; 134(4):471-95. PubMed ID: 3224790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gross osteology and radiology of the pelvic limb of the adult small East African goat.
    Makungu M
    Anat Histol Embryol; 2019 May; 48(3):234-243. PubMed ID: 30663784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteology of the pelvic limb of the African elephant (Loxodonta africana).
    Smuts MM; Bezuidenhout AJ
    Onderstepoort J Vet Res; 1994 Mar; 61(1):51-66. PubMed ID: 7898898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteomorphometry of the bones of the thigh, crus and foot in the New Zealand white rabbit (Oryctolagus cuniculus).
    Ajayi IE; Shawulu JC; Zachariya TS; Ahmed S; Adah BM
    Ital J Anat Embryol; 2012; 117(3):125-34. PubMed ID: 23420943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiological and osteological study of the pelvic limbs in free-ranging capybaras (Hydrochoerus hydrochaeris).
    Brombini GC; Rahal SC; Schimming BC; Santos IFC; Tsunemi MH; Mamprim MJ; Alves LS; Filadelpho AL; Teixeira CR
    Anat Histol Embryol; 2018 Jun; 47(3):239-249. PubMed ID: 29492995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry in bone weight in the human lower limbs.
    Dogra SK; Singh I
    Anat Anz; 1971; 128(3):278-80. PubMed ID: 5098691
    [No Abstract]   [Full Text] [Related]  

  • 9. Skeletal indicators of locomotor adaptations in living and extinct rodents.
    Samuels JX; Van Valkenburgh B
    J Morphol; 2008 Nov; 269(11):1387-411. PubMed ID: 18777567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional anatomy of the hindlimb of some African Viverridae (Carnivora).
    Taylor ME
    J Morphol; 1976 Feb; 148(2):227-54. PubMed ID: 1255730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex-related differences of morphometric, densitometric, and geometric parameters of tibia and tarsometatarsal bone in 14-month-old ostriches (Struthio camelus).
    Charuta A; Dzierzecka M; Pierzchala M; Cooper RG; Polawska E; Horbanczuk JO
    Poult Sci; 2013 Nov; 92(11):2965-76. PubMed ID: 24135601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindlimb adaptations in Ourayia and Chipetaia, relatively large-bodied omomyine primates from the Middle Eocene of Utah.
    Dunn RH; Sybalsky JM; Conroy GC; Rasmussen DT
    Am J Phys Anthropol; 2006 Nov; 131(3):303-10. PubMed ID: 16617428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a Middle Eocene primate.
    Anemone RL; Covert HH
    J Hum Evol; 2000 May; 38(5):607-33. PubMed ID: 10799256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications.
    Sargis EJ
    J Morphol; 2002 Nov; 254(2):149-85. PubMed ID: 12353299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometric studies on the appendicular bony skeleton of the ostriches (Struthio Camelus).
    Kassem MAM; Tahon RR; Khalil KM; El-Ayat MA
    BMC Vet Res; 2023 Aug; 19(1):109. PubMed ID: 37542302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional morphology of the hindlimb in some lacertilia.
    Landsmeer JM
    Eur J Morphol; 1990; 28(1):3-34. PubMed ID: 2390409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Topography of lymph nodes in the grasscutter (Thryonomys swinderianus, Temminck 1827)].
    Alogninouwa T; Agba KC; Gambo S; Kpodekon M
    Anat Histol Embryol; 1995 Mar; 24(1):29-37. PubMed ID: 7645748
    [No Abstract]   [Full Text] [Related]  

  • 18. Morphology of the pelvis and hind limb of the red panda (Ailurus fulgens) evidenced by gross osteology, radiography and computed tomography.
    Makungu M; du Plessis WM; Groenewald HB; Barrows M; Koeppel KN
    Anat Histol Embryol; 2015 Dec; 44(6):410-21. PubMed ID: 25308447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometric study of the human metatarsals and phalanges.
    Dogan A; Uslu M; Aydinlioglu A; Harman M; Akpinar F
    Clin Anat; 2007 Mar; 20(2):209-14. PubMed ID: 16795031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheel-running behavior.
    Castro AA; Garland T
    J Morphol; 2018 Jun; 279(6):766-779. PubMed ID: 29533474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.