BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29139163)

  • 1. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
    Abriata LA; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():97-112. PubMed ID: 29139163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments.
    Abriata LA; Tamò GE; Dal Peraro M
    Proteins; 2019 Dec; 87(12):1100-1112. PubMed ID: 31344267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi-automated metrics.
    Abriata LA; Kinch LN; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():16-26. PubMed ID: 29044714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of protein assembly prediction in CASP12.
    Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of template-based modeling in CASP13.
    Croll TI; Sammito MD; Kryshtafovych A; Read RJ
    Proteins; 2019 Dec; 87(12):1113-1127. PubMed ID: 31407380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
    Schaarschmidt J; Monastyrskyy B; Kryshtafovych A; Bonvin AMJJ
    Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):51-66. PubMed ID: 29071738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure modeling and refinement by global optimization in CASP12.
    Hong SH; Joung I; Flores-Canales JC; Manavalan B; Cheng Q; Heo S; Kim JY; Lee SY; Nam M; Joo K; Lee IH; Lee SJ; Lee J
    Proteins; 2018 Mar; 86 Suppl 1():122-135. PubMed ID: 29159837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the model refinement category in CASP12.
    Hovan L; Oleinikovas V; Yalinca H; Kryshtafovych A; Saladino G; Gervasio FL
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):152-167. PubMed ID: 29071750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of free modeling targets in CASP11 and ROLL.
    Kinch LN; Li W; Monastyrskyy B; Kryshtafovych A; Grishin NV
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):51-66. PubMed ID: 26677002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the UNRES force field in template-assisted prediction of protein structures and the refinement of server models: Test with CASP12 targets.
    Karczyńska A; Mozolewska MA; Krupa P; Giełdoń A; Bojarski KK; Zaborowski B; Liwo A; Ślusarz R; Ślusarz M; Lee J; Joo K; Czaplewski C
    J Mol Graph Model; 2018 Aug; 83():92-99. PubMed ID: 29860162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.
    Terashi G; Kihara D
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):189-201. PubMed ID: 28833585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the template-based modeling in CASP12.
    Kryshtafovych A; Monastyrskyy B; Fidelis K; Moult J; Schwede T; Tramontano A
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):321-334. PubMed ID: 29159950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14).
    Kinch LN; Pei J; Kryshtafovych A; Schaeffer RD; Grishin NV
    Proteins; 2021 Dec; 89(12):1673-1686. PubMed ID: 34240477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CASP13 target classification into tertiary structure prediction categories.
    Kinch LN; Kryshtafovych A; Monastyrskyy B; Grishin NV
    Proteins; 2019 Dec; 87(12):1021-1036. PubMed ID: 31294862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of template-based modeling of protein structure in CASP11.
    Modi V; Xu Q; Adhikari S; Dunbrack RL
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):200-20. PubMed ID: 27081927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods.
    McGuffin LJ; Shuid AN; Kempster R; Maghrabi AHA; Nealon JO; Salehe BR; Atkins JD; Roche DB
    Proteins; 2018 Mar; 86 Suppl 1():335-344. PubMed ID: 28748648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.