These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 2913925)
1. Metabolic changes in rabbit spinal cord after trauma: magnetic resonance spectroscopy studies. Vink R; Noble LJ; Knoblach SM; Bendall MR; Faden AI Ann Neurol; 1989 Jan; 25(1):26-31. PubMed ID: 2913925 [TBL] [Abstract][Full Text] [Related]
2. Effects of TRH-analog treatment on tissue cations, phospholipids and energy metabolism after spinal cord injury. Faden AI; Yum SW; Lemke M; Vink R J Pharmacol Exp Ther; 1990 Nov; 255(2):608-14. PubMed ID: 2123006 [TBL] [Abstract][Full Text] [Related]
3. [Changes in energy metabolism and spinal cord blood flow following severe spinal cord injury]. Hayashi N; Tsubokawa T; Green BA No Shinkei Geka; 1984 Jul; 12(8):923-30. PubMed ID: 6483099 [TBL] [Abstract][Full Text] [Related]
4. 31P magnetic resonance spectroscopy of traumatic spinal cord injury. Vink R; Knoblach SM; Faden AI Magn Reson Med; 1987 Oct; 5(4):390-4. PubMed ID: 3683171 [TBL] [Abstract][Full Text] [Related]
5. In vivo phosphorus-31 nuclear magnetic resonance study of the regional metabolic response to cardiac ischemia. Malloy CR; Matthews PM; Smith MB; Radda GK Adv Myocardiol; 1985; 6():461-4. PubMed ID: 3992043 [TBL] [Abstract][Full Text] [Related]
6. Brain changes to hypocapnia using rapidly interleaved phosphorus-proton magnetic resonance spectroscopy at 4 T. Friedman SD; Jensen JE; Frederick BB; Artru AA; Renshaw PF; Dager SR J Cereb Blood Flow Metab; 2007 Mar; 27(3):646-53. PubMed ID: 16896347 [TBL] [Abstract][Full Text] [Related]
7. Spinal cord energy metabolism following compression trauma to the feline spinal cord. Anderson DK; Means ED; Waters TR; Spears CJ J Neurosurg; 1980 Sep; 53(3):375-80. PubMed ID: 7420153 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet. Cady EB; Iwata O; Bainbridge A; Wyatt JS; Robertson NJ J Neurochem; 2008 Nov; 107(4):1027-35. PubMed ID: 18786177 [TBL] [Abstract][Full Text] [Related]
10. Analysis of muscle bioenergetic metabolism in rabbit leg lengthening. Kanbe K; Hasegawa A; Takagishi K; Shirakura K; Nagase M; Yanagawa T; Tomiyoshi K Clin Orthop Relat Res; 1998 Jun; (351):214-21. PubMed ID: 9646765 [TBL] [Abstract][Full Text] [Related]
11. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study. Vink R; McIntosh TK; Weiner MW; Faden AI J Cereb Blood Flow Metab; 1987 Oct; 7(5):563-71. PubMed ID: 3654796 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus-31 magnetic resonance spectroscopy studies of pig spinal cord injury. Myelin changes, intracellular pH, and bioenergetics. Akino M; O'Donnell JM; Robitaille PM; Stokes BT Invest Radiol; 1997 Jul; 32(7):382-8. PubMed ID: 9228603 [TBL] [Abstract][Full Text] [Related]
13. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Arnold DL; Taylor DJ; Radda GK Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759 [TBL] [Abstract][Full Text] [Related]
14. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study. Balschi JA; Henderson T; Bradley EL; Gelman S J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075 [TBL] [Abstract][Full Text] [Related]
15. [Disturbances of hydrogen electron transport system and free radical reactions after severe spinal cord injury]. Hayashi N; Tsubokawa T; Abe K; Green BA No Shinkei Geka; 1984 Aug; 12(9):1039-46. PubMed ID: 6504261 [TBL] [Abstract][Full Text] [Related]
16. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Taylor DJ; Bore PJ; Styles P; Gadian DG; Radda GK Mol Biol Med; 1983 Jul; 1(1):77-94. PubMed ID: 6679873 [TBL] [Abstract][Full Text] [Related]
17. [Contribution of magnetic resonance spectroscopy in predicting severity and outcome in traumatic brain injury]. Payen JF; Francony G; Fauvage B; Le Bas JF Ann Fr Anesth Reanim; 2005 May; 24(5):522-7. PubMed ID: 15904731 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging. Morikawa S; Inubushi T; Kito K Cardiovasc Surg; 1993 Aug; 1(4):337-42. PubMed ID: 8076056 [TBL] [Abstract][Full Text] [Related]
19. Traumatic spinal cord injury in rabbits decreases intracellular free magnesium concentration as measured by 31P MRS. Vink R; Yum SW; Lemke M; Demediuk P; Faden AI Brain Res; 1989 Jun; 490(1):144-7. PubMed ID: 2758321 [TBL] [Abstract][Full Text] [Related]
20. In vivo noninvasive observation of acute mesenteric ischemia in rats. Blum H; Chance B; Buzby GP Surg Gynecol Obstet; 1987 May; 164(5):409-14. PubMed ID: 3576417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]