These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 29139287)

  • 41. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics.
    Perumal Veeramalai C; Kollu P; Lin G; Zhang X; Li C
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33857936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector.
    Boruah BD; Mukherjee A; Misra A
    Nanotechnology; 2016 Mar; 27(9):095205. PubMed ID: 26857833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensitive and Robust Ultraviolet Photodetector Array Based on Self-Assembled Graphene/C
    Qin S; Chen X; Du Q; Nie Z; Wang X; Lu H; Wang X; Liu K; Xu Y; Shi Y; Zhang R; Wang F
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38326-38333. PubMed ID: 30207446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses.
    Wang J; Xiao S; Qian W; Zhang K; Yu J; Xu X; Wang G; Zheng S; Yang S
    Adv Mater; 2021 Jan; 33(3):e2005557. PubMed ID: 33300215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulating interface Schottky barriers toward a high-performance self-powered imaging photodetector.
    Yan J; Gao F; Gong W; Tian Y; Li L
    RSC Adv; 2022 Sep; 12(40):25881-25889. PubMed ID: 36199597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions.
    Alwadai N; Haque MA; Mitra S; Flemban T; Pak Y; Wu T; Roqan I
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37832-37838. PubMed ID: 29039640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CuInSe
    Guo R; Huang F; Zheng K; Pullerits T; Tian J
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35656-35663. PubMed ID: 30251817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of a dual functional blocking layer for improvement of the responsivity in a self-powered UV photodetector based on TiO
    Zare A; Behaein S; Moradi M; Hosseini Z
    RSC Adv; 2022 Mar; 12(16):9909-9916. PubMed ID: 35424944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graphene-ruthenium complex hybrid photodetectors with ultrahigh photoresponsivity.
    Liu X; Lee EK; Oh JH
    Small; 2014 Sep; 10(18):3700-6. PubMed ID: 24861217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MoS
    Sundararaju U; Mohammad Haniff MAS; Ker PJ; Menon PS
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-pot synthesized Bi
    Wang B; Huang Z; Tang P; Luo S; Liu Y; Li J; Qi X
    Nanotechnology; 2020 Mar; 31(11):115201. PubMed ID: 31747652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gate-Controlled Graphene-Silicon Schottky Junction Photodetector.
    Chang KE; Yoo TJ; Kim C; Kim YJ; Lee SK; Kim SY; Heo S; Kwon MG; Lee BH
    Small; 2018 Jul; 14(28):e1801182. PubMed ID: 29877040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hybrid Organic-Inorganic Perovskite Photodetectors.
    Tian W; Zhou H; Li L
    Small; 2017 Nov; 13(41):. PubMed ID: 28895306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector.
    Wu J; Qiu C; Feng S; Yao T; Yan Y; Lin S
    Nanotechnology; 2019 Nov; 31(10):105204. PubMed ID: 31751950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Internal-Electrostatic-Field-Boosted Self-Powered Ultraviolet Photodetector.
    Yuan D; Wan L; Zhang H; Jiang J; Liu B; Li Y; Su Z; Zhai J
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications.
    Guo J; Liu Y; Lin Y; Tian Y; Zhang J; Gong T; Cheng T; Huang W; Zhang X
    Nanoscale; 2019 Nov; 11(43):20868-20875. PubMed ID: 31657407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication.
    Pan X; Zhang J; Zhou H; Liu R; Wu D; Wang R; Shen L; Tao L; Zhang J; Wang H
    Nanomicro Lett; 2021 Feb; 13(1):70. PubMed ID: 34138321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silicon/Perovskite Core-Shell Heterojunctions with Light-Trapping Effect for Sensitive Self-Driven Near-Infrared Photodetectors.
    Liu JQ; Gao Y; Wu GA; Tong XW; Xie C; Luo LB; Liang L; Wu YC
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27850-27857. PubMed ID: 30058333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wide-Bandgap CaSnO
    Tran MH; Park T; Hur J
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13372-13382. PubMed ID: 33709683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.