These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29139294)

  • 1. Improved Electrostatic Embedding for Fragment-Based Chemical Shift Calculations in Molecular Crystals.
    Hartman JD; Balaji A; Beran GJO
    J Chem Theory Comput; 2017 Dec; 13(12):6043-6051. PubMed ID: 29139294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate fragment-based 51-V chemical shift predictions in molecular crystals.
    Mathews A; Hartman JD
    Solid State Nucl Magn Reson; 2021 Aug; 114():101733. PubMed ID: 34082261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.
    Hartman JD; Kudla RA; Day GM; Mueller LJ; Beran GJ
    Phys Chem Chem Phys; 2016 Aug; 18(31):21686-709. PubMed ID: 27431490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections.
    Hartman JD; Harper JK
    Solid State Nucl Magn Reson; 2022 Dec; 122():101832. PubMed ID: 36198253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting
    Hartman JD; Capistran D
    Magn Reson Chem; 2024 Jun; 62(6):416-428. PubMed ID: 38114304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark accuracy of predicted NMR observables for quadrupolar
    Hartman JD; Spock LE; Harper JK
    Magn Reson Chem; 2023 Apr; 61(4):253-267. PubMed ID: 36567433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculations of solid-state
    Holmes ST; Bai S; Iuliucci RJ; Mueller KT; Dybowski C
    J Comput Chem; 2017 May; 38(13):949-956. PubMed ID: 28233952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.
    Esrafili MD; Behzadi H; Hadipour NL
    Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Accurate Electric Field Gradient Calculations in Molecular Solids With Density Functional Theory.
    Hartman JD; Mathews A; Harper JK
    Front Chem; 2021; 9():751711. PubMed ID: 34692646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards hybrid density functional calculations of molecular crystals via fragment-based methods.
    Loboda OA; Dolgonos GA; Boese AD
    J Chem Phys; 2018 Sep; 149(12):124104. PubMed ID: 30278654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GIAO versus GIPAW: Comparison of Methods To Calculate
    Ludwig M; Himmel D; Hillebrecht H
    J Phys Chem A; 2020 Mar; 124(11):2173-2185. PubMed ID: 31999459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Molecular Crystals by QM/MM: Self-Consistent Electrostatic Embedding for Geometry Optimizations and Molecular Property Calculations in the Solid.
    Bjornsson R; Bühl M
    J Chem Theory Comput; 2012 Feb; 8(2):498-508. PubMed ID: 26596600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.