These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29140245)

  • 1. Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response.
    Singer E; Silas YB; Ben-Yehuda S; Pines O
    Elife; 2017 Nov; 6():. PubMed ID: 29140245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of Class-I fumarases and metabolites (α-ketoglutarate and fumarate) signal the DNA damage response in
    Silas Y; Singer E; Das K; Lehming N; Pines O
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34083440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase.
    Pines O; Even-Ram S; Elnathan N; Battat E; Aharonov O; Gibson D; Goldberg I
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):393-9. PubMed ID: 8987728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.
    Yogev O; Yogev O; Singer E; Shaulian E; Goldberg M; Fox TD; Pines O
    PLoS Biol; 2010 Mar; 8(3):e1000328. PubMed ID: 20231875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion.
    Steyn A; Viljoen-Bloom M; Van Zyl WH
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36646426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
    Liu Y; Song J; Tan T; Liu L
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2823-31. PubMed ID: 25561060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
    Presecki AV; Vasić-Racki D
    Biotechnol Lett; 2005 Dec; 27(23-24):1835-9. PubMed ID: 16328976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fumarase: a paradigm of dual targeting and dual localized functions.
    Yogev O; Naamati A; Pines O
    FEBS J; 2011 Nov; 278(22):4230-42. PubMed ID: 21929734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts.
    Wang X; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1998; 70-72():845-52. PubMed ID: 9627400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2.
    Leshets M; Ramamurthy D; Lisby M; Lehming N; Pines O
    Curr Genet; 2018 Jun; 64(3):697-712. PubMed ID: 29204698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional expression of FumA in
    Zhang C; Shi M; Xu Y; Yang D; Lu L; Xue F; Xu Q
    Appl Environ Microbiol; 2024 Apr; 90(4):e0000824. PubMed ID: 38506527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor.
    Bressler E; Pines O; Goldberg I; Braun S
    Biotechnol Prog; 2002; 18(3):445-50. PubMed ID: 12052057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression.
    Leshets M; Silas YBH; Lehming N; Pines O
    Front Mol Biosci; 2018; 5():68. PubMed ID: 30090811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt.
    Regev-Rudzki N; Battat E; Goldberg I; Pines O
    Mol Microbiol; 2009 Apr; 72(2):297-306. PubMed ID: 19415796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of L-malic acid by yeasts of the genus Dipodascus.
    Rosenberg M; Miková H; Kristofíková L
    Lett Appl Microbiol; 1999 Oct; 29(4):221-3. PubMed ID: 10583747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational Modifications of Fumarase Regulate its Enzyme Activity and Function in Respiration and the DNA Damage Response.
    Wang S; Ramamurthy D; Tan J; Liu J; Yip J; Chua A; Yu Z; Lim TK; Lin Q; Pines O; Lehming N
    J Mol Biol; 2020 Nov; 432(23):6108-6126. PubMed ID: 33058874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids.
    Kidane D; Sanchez H; Alonso JC; Graumann PL
    Mol Microbiol; 2004 Jun; 52(6):1627-39. PubMed ID: 15186413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving dual targeting of a prokaryotic protein in yeast.
    Burak E; Yogev O; Sheffer S; Schueler-Furman O; Pines O
    Mol Biol Evol; 2013 Jul; 30(7):1563-73. PubMed ID: 23462316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of fumarase during mitochondrial import determines its dual targeting in yeast.
    Sass E; Karniely S; Pines O
    J Biol Chem; 2003 Nov; 278(46):45109-16. PubMed ID: 12960177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.