These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29140245)

  • 21. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components.
    Bagdasaryan ZN; Aleksanyan GA; Mirzoyan AM; Roseiro JC; Bagdasaryan SN
    Appl Biochem Biotechnol; 2005 May; 125(2):113-26. PubMed ID: 15858235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the fumarase gene of Bacillus subtilis 168 cloned and expressed in Escherichia coli K12.
    Moir A; Feavers IM; Guest JR
    J Gen Microbiol; 1984 Nov; 130(11):3009-17. PubMed ID: 6098632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid.
    Giorno L; Drioli E; Carvoli G; Cassano A; Donato L
    Biotechnol Bioeng; 2001 Jan; 72(1):77-84. PubMed ID: 11084597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production].
    Hu YH; Ouyang PK; Shen SB; Chen WL
    Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):503-5. PubMed ID: 11797209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered Bacillus subtilis 168 produces L-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion.
    Mu L; Wen J
    World J Microbiol Biotechnol; 2013 Jan; 29(1):33-41. PubMed ID: 22914898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio.
    Ding Y; Li S; Dou C; Yu Y; Huang H
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1461-7. PubMed ID: 21416336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA double strand break end-processing and RecA induce RecN expression levels in Bacillus subtilis.
    Cardenas PP; Gándara C; Alonso JC
    DNA Repair (Amst); 2014 Feb; 14():1-8. PubMed ID: 24373815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioconversion of fumaric acid to L-malic acid by the bacteria of the genus Nocardia.
    Hronská H; Tokošová S; Pilniková A; Krištofíková Ľ; Rosenberg M
    Appl Biochem Biotechnol; 2015 Jan; 175(1):266-73. PubMed ID: 25261359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini.
    Sass E; Blachinsky E; Karniely S; Pines O
    J Biol Chem; 2001 Dec; 276(49):46111-7. PubMed ID: 11585823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Putting a break on protein translocation: metabolic regulation of mitochondrial protein import.
    Herrmann JM
    Mol Microbiol; 2009 Apr; 72(2):275-8. PubMed ID: 19415790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alpha-complementation as a probe for dual localization of mitochondrial proteins.
    Karniely S; Rayzner A; Sass E; Pines O
    Exp Cell Res; 2006 Nov; 312(19):3835-46. PubMed ID: 17034789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Stability of biocatalysts on the basis of carrageenan-immobilized Escherichia coli during continuous synthesis of L-malic acid].
    Verevkin AN; Iakovleva VI
    Prikl Biokhim Mikrobiol; 1990; 26(1):19-25. PubMed ID: 2190207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning, sequencing, and mutational analysis of the Bradyrhizobium japonicum fumC-like gene: evidence for the existence of two different fumarases.
    Acuña G; Ebeling S; Hennecke H
    J Gen Microbiol; 1991 Apr; 137(4):991-1000. PubMed ID: 1856685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. L-malic acid production using immobilized Saccharomyces cerevisiae.
    Figueiredo ZM; Carvalho Júnior LB
    Appl Biochem Biotechnol; 1991 Aug; 30(2):217-24. PubMed ID: 1952933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Import into mitochondria, folding and retrograde movement of fumarase in yeast.
    Knox C; Sass E; Neupert W; Pines O
    J Biol Chem; 1998 Oct; 273(40):25587-93. PubMed ID: 9748223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of fumarase from thermophilic eukaryotic red alga Cyanidioschyzon merolae on ceramic carrier.
    Yamane M; Iwazumi K; Osanai T
    J Gen Appl Microbiol; 2024 Sep; 70(2):. PubMed ID: 38417903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of fumarase by bismuth(III): implications for the tricarboxylic acid cycle as a potential target of bismuth drugs in Helicobacter pylori.
    Chen Z; Zhou Q; Ge R
    Biometals; 2012 Feb; 25(1):95-102. PubMed ID: 21818585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The presequence of fumarase is exposed to the cytosol during import into mitochondria.
    Karniely S; Regev-Rudzki N; Pines O
    J Mol Biol; 2006 Apr; 358(2):396-405. PubMed ID: 16530220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence.
    Singh B; Gupta RS
    Biochem Biophys Res Commun; 2006 Aug; 346(3):911-8. PubMed ID: 16774737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microcalorimetric sensor for food and cosmetic analyses: l-Malic acid determination.
    Antonelli ML; Spadaro C; Tornelli RF
    Talanta; 2008 Feb; 74(5):1450-4. PubMed ID: 18371803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.