These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29140278)
1. Development of Gallic Acid-Modified Hydrogels Using Interpenetrating Chitosan Network and Evaluation of Their Antioxidant Activity. Kang B; Vales TP; Cho BK; Kim JK; Kim HJ Molecules; 2017 Nov; 22(11):. PubMed ID: 29140278 [TBL] [Abstract][Full Text] [Related]
2. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Vaghani SS; Patel MM Drug Dev Ind Pharm; 2011 Oct; 37(10):1160-9. PubMed ID: 21417603 [TBL] [Abstract][Full Text] [Related]
3. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer. Mandal B; Ray SK Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():132-43. PubMed ID: 25280689 [TBL] [Abstract][Full Text] [Related]
4. Soft hydrogels interpenetrating silicone--A polymer network for drug-releasing medical devices. Steffensen SL; Vestergaard MH; Møller EH; Groenning M; Alm M; Franzyk H; Nielsen HM J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):402-10. PubMed ID: 25892578 [TBL] [Abstract][Full Text] [Related]
5. Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Dragan ES; Cocarta AI; Gierszewska M Colloids Surf B Biointerfaces; 2016 Mar; 139():33-41. PubMed ID: 26700231 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method. Hu Q; Wang T; Zhou M; Xue J; Luo Y J Agric Food Chem; 2016 Jul; 64(29):5893-900. PubMed ID: 27379913 [TBL] [Abstract][Full Text] [Related]
7. Antioxidative, Anti-Inflammatory, Antibacterial, Photo-Cross-Linkable Hydrogel of Gallic Acid-Chitosan Methacrylate: Synthesis, Lu Y; Lou X; Jiang J; Wang J; Peng X; Yao H; Wu J Biomacromolecules; 2024 Jul; 25(7):4358-4373. PubMed ID: 38924782 [TBL] [Abstract][Full Text] [Related]
8. Binding of D-mannose to poly(2-hydroxyethyl methacrylate) hydrogels by azo coupling. Labský J Biomaterials; 2003 Oct; 24(22):4031-6. PubMed ID: 12834598 [TBL] [Abstract][Full Text] [Related]
9. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Wahid F; Hu XH; Chu LQ; Jia SR; Xie YY; Zhong C Int J Biol Macromol; 2019 Feb; 122():380-387. PubMed ID: 30342151 [TBL] [Abstract][Full Text] [Related]
10. Enhanced adsorption of methyl violet and congo red by using semi and full IPN of polymethacrylic acid and chitosan. Maity J; Ray SK Carbohydr Polym; 2014 Apr; 104():8-16. PubMed ID: 24607153 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials. Jones DS; McLaughlin DW; McCoy CP; Gorman SP Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150 [TBL] [Abstract][Full Text] [Related]
12. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics. Korogiannaki M; Zhang J; Sheardown H J Biomater Appl; 2017 Oct; 32(4):446-462. PubMed ID: 28992804 [TBL] [Abstract][Full Text] [Related]
13. Hydrogels based on interpenetrating network of chitosan and polyvinyl pyrrolidone for pH-sensitive delivery of repaglinide. Vaghani SS; Patel MM Curr Drug Discov Technol; 2011 Jun; 8(2):126-35. PubMed ID: 21513486 [TBL] [Abstract][Full Text] [Related]
14. Phenolic antioxidants-functionalized quaternized chitosan: synthesis and antioxidant properties. Ren J; Li Q; Dong F; Feng Y; Guo Z Int J Biol Macromol; 2013 Feb; 53():77-81. PubMed ID: 23164754 [TBL] [Abstract][Full Text] [Related]
15. Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention. Tsuru T; Sugimura K; Nishio Y Carbohydr Polym; 2017 Dec; 178():1-7. PubMed ID: 29050574 [TBL] [Abstract][Full Text] [Related]
16. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Curcio M; Puoci F; Iemma F; Parisi OI; Cirillo G; Spizzirri UG; Picci N J Agric Food Chem; 2009 Jul; 57(13):5933-8. PubMed ID: 19566085 [TBL] [Abstract][Full Text] [Related]
17. Cell Loaded GelMA:HEMA IPN hydrogels for corneal stroma engineering. Kilic Bektas C; Hasirci V J Mater Sci Mater Med; 2019 Dec; 31(1):2. PubMed ID: 31811387 [TBL] [Abstract][Full Text] [Related]
18. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Puertas-Bartolomé M; Benito-Garzón L; Fung S; Kohn J; Vázquez-Lasa B; San Román J Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110040. PubMed ID: 31546368 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. Bai R; Yong H; Zhang X; Liu J; Liu J Int J Biol Macromol; 2020 Jan; 143():49-59. PubMed ID: 31812751 [TBL] [Abstract][Full Text] [Related]
20. Superporous polyacrylate/chitosan IPN hydrogels for protein delivery. Gümüşderelioğlu M; Erce D; Demirtaş TT J Mater Sci Mater Med; 2011 Nov; 22(11):2467-75. PubMed ID: 21901372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]