BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29140433)

  • 1. IL-27/IL-27 Receptor Signaling Provides Protection in Clostridium difficile-Induced Colitis.
    Wang L; Cao J; Li C; Zhang L
    J Infect Dis; 2018 Jan; 217(2):198-207. PubMed ID: 29140433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging impairs protective host defenses against Clostridioides (Clostridium) difficile infection in mice by suppressing neutrophil and IL-22 mediated immunity.
    Peniche AG; Spinler JK; Boonma P; Savidge TC; Dann SM
    Anaerobe; 2018 Dec; 54():83-91. PubMed ID: 30099125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium difficile-induced colitis in mice is independent of leukotrienes.
    Trindade BC; Theriot CM; Leslie JL; Carlson PE; Bergin IL; Peters-Golden M; Young VB; Aronoff DM
    Anaerobe; 2014 Dec; 30():90-8. PubMed ID: 25230329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Interleukin-10 (IL-10) Signaling Promotes IL-22-Dependent Host Defenses against Acute Clostridioides difficile Infection.
    Cribas ES; Denny JE; Maslanka JR; Abt MC
    Infect Immun; 2021 Apr; 89(5):. PubMed ID: 33649048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colitis-Induced Th17 Cells Increase the Risk for Severe Subsequent Clostridium difficile Infection.
    Saleh MM; Frisbee AL; Leslie JL; Buonomo EL; Cowardin CA; Ma JZ; Simpson ME; Scully KW; Abhyankar MM; Petri WA
    Cell Host Microbe; 2019 May; 25(5):756-765.e5. PubMed ID: 31003940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of interleukin 23 signaling in Clostridium difficile colitis.
    Buonomo EL; Madan R; Pramoonjago P; Li L; Okusa MD; Petri WA
    J Infect Dis; 2013 Sep; 208(6):917-20. PubMed ID: 23776194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection.
    Markey L; Shaban L; Green ER; Lemon KP; Mecsas J; Kumamoto CA
    Gut Microbes; 2018 Nov; 9(6):497-509. PubMed ID: 29667487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Butyrate-Producing Bacterium
    Hayashi A; Nagao-Kitamoto H; Kitamoto S; Kim CH; Kamada N
    J Immunol; 2021 Apr; 206(7):1576-1585. PubMed ID: 33597149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice.
    Johnston PF; Gerding DN; Knight KL
    Infect Immun; 2014 Feb; 82(2):522-31. PubMed ID: 24478068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s).
    Jafari NV; Kuehne SA; Bryant CE; Elawad M; Wren BW; Minton NP; Allan E; Bajaj-Elliott M
    PLoS One; 2013; 8(7):e69846. PubMed ID: 23922820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium difficile infection aggravates colitis in interleukin 10-deficient mice.
    Kim MN; Koh SJ; Kim JM; Im JP; Jung HC; Kim JS
    World J Gastroenterol; 2014 Dec; 20(45):17084-91. PubMed ID: 25493020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile.
    Cowardin CA; Kuehne SA; Buonomo EL; Marie CS; Minton NP; Petri WA
    mBio; 2015 Jan; 6(1):. PubMed ID: 25626905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota.
    Nagao-Kitamoto H; Leslie JL; Kitamoto S; Jin C; Thomsson KA; Gillilland MG; Kuffa P; Goto Y; Jenq RR; Ishii C; Hirayama A; Seekatz AM; Martens EC; Eaton KA; Kao JY; Fukuda S; Higgins PDR; Karlsson NG; Young VB; Kamada N
    Nat Med; 2020 Apr; 26(4):608-617. PubMed ID: 32066975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the impact of antibiotic-induced dysbiosis on protection from
    Uddin MJ; Thompson B; Leslie JL; Fishman C; Sol-Church K; Kumar P; Petri WA
    mBio; 2024 Mar; 15(3):e0333823. PubMed ID: 38376154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type 2 cytokines IL-4 and IL-5 reduce severe outcomes from Clostridiodes difficile infection.
    Donlan AN; Simpson ME; Petri WA
    Anaerobe; 2020 Dec; 66():102275. PubMed ID: 32971206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ATP-P2X
    Liu YH; Chang YC; Chen LK; Su PA; Ko WC; Tsai YS; Chen YH; Lai HC; Wu CY; Hung YP; Tsai PJ
    Front Cell Infect Microbiol; 2018; 8():84. PubMed ID: 29616195
    [No Abstract]   [Full Text] [Related]  

  • 17. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of
    Xu B; Wu X; Gong Y; Cao J
    Gut Microbes; 2021; 13(1):1968258. PubMed ID: 34432564
    [No Abstract]   [Full Text] [Related]  

  • 18. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection.
    Sun X; Hirota SA
    Mol Immunol; 2015 Feb; 63(2):193-202. PubMed ID: 25242213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection.
    Andersson JA; Peniche AG; Galindo CL; Boonma P; Sha J; Luna RA; Savidge TC; Chopra AK; Dann SM
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indomethacin increases severity of Clostridium difficile infection in mouse model.
    Muñoz-Miralles J; Trindade BC; Castro-Córdova P; Bergin IL; Kirk LA; Gil F; Aronoff DM; Paredes-Sabja D
    Future Microbiol; 2018 Sep; 13(11):1271-1281. PubMed ID: 30238771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.