These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 29140466)

  • 21. Chromosome compaction and chromatin stiffness enhance diffusive loop extrusion by slip-link proteins.
    Bonato A; Brackley CA; Johnson J; Michieletto D; Marenduzzo D
    Soft Matter; 2020 Mar; 16(9):2406-2414. PubMed ID: 32067018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for the preservation of a subset of topologically associating domains in interphase chromosomes upon cohesin depletion.
    Jeong D; Shi G; Li X; Thirumalai D
    Elife; 2024 Mar; 12():. PubMed ID: 38502563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning.
    Oomen ME; Hansen AS; Liu Y; Darzacq X; Dekker J
    Genome Res; 2019 Feb; 29(2):236-249. PubMed ID: 30655336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.
    van Ruiten MS; Rowland BD
    Curr Opin Cell Biol; 2021 Jun; 70():84-90. PubMed ID: 33545664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular basis of CTCF binding polarity in genome folding.
    Nora EP; Caccianini L; Fudenberg G; So K; Kameswaran V; Nagle A; Uebersohn A; Hajj B; Saux AL; Coulon A; Mirny LA; Pollard KS; Dahan M; Bruneau BG
    Nat Commun; 2020 Nov; 11(1):5612. PubMed ID: 33154377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging.
    Gabriele M; Brandão HB; Grosse-Holz S; Jha A; Dailey GM; Cattoglio C; Hsieh TS; Mirny L; Zechner C; Hansen AS
    Science; 2022 Apr; 376(6592):496-501. PubMed ID: 35420890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropic Competition between Supercoiled and Torsionally Relaxed Chromatin Fibers Drives Loop Extrusion through Pseudo-Topologically Bound Cohesin.
    Rusková R; Račko D
    Biology (Basel); 2021 Feb; 10(2):. PubMed ID: 33562371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome structure in
    Bing X; Ke W; Fujioka M; Kurbidaeva A; Levitt S; Levine M; Schedl P; Jaynes JB
    Elife; 2024 Aug; 13():. PubMed ID: 39110499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer simulations guide the detection and quantification of chromatin loop extrusion by imaging.
    Sabaté T; Lelandais B; Bertrand E; Zimmer C
    Nucleic Acids Res; 2023 Apr; 51(6):2614-2632. PubMed ID: 36840746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TADs: Dynamic structures to create stable regulatory functions.
    da Costa-Nunes JA; Noordermeer D
    Curr Opin Struct Biol; 2023 Aug; 81():102622. PubMed ID: 37302180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription shapes 3D chromatin organization by interacting with loop extrusion.
    Banigan EJ; Tang W; van den Berg AA; Stocsits RR; Wutz G; Brandão HB; Busslinger GA; Peters JM; Mirny LA
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2210480120. PubMed ID: 36897969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-coding RNAs and chromatin domains.
    Yamamoto T; Saitoh N
    Curr Opin Cell Biol; 2019 Jun; 58():26-33. PubMed ID: 30682683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity of cohesin-chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion.
    Golov AK; Golova AV; Gavrilov AA; Razin SV
    Epigenetics Chromatin; 2021 Jul; 14(1):36. PubMed ID: 34321070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries.
    Nanni L; Ceri S; Logie C
    Genome Biol; 2020 Aug; 21(1):197. PubMed ID: 32782014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-mediated loops in supercoiled DNA create large topological domains.
    Yan Y; Ding Y; Leng F; Dunlap D; Finzi L
    Nucleic Acids Res; 2018 May; 46(9):4417-4424. PubMed ID: 29538766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization.
    Kant A; Guo Z; Vinayak V; Neguembor MV; Li WS; Agrawal V; Pujadas E; Almassalha L; Backman V; Lakadamyali M; Cosma MP; Shenoy VB
    Nat Commun; 2024 May; 15(1):4338. PubMed ID: 38773126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells.
    Wang Q; Sun Q; Czajkowsky DM; Shao Z
    Nat Commun; 2018 Jan; 9(1):188. PubMed ID: 29335463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of single-cell genome organization into TADs and chromatin nanodomains.
    Szabo Q; Donjon A; Jerković I; Papadopoulos GL; Cheutin T; Bonev B; Nora EP; Bruneau BG; Bantignies F; Cavalli G
    Nat Genet; 2020 Nov; 52(11):1151-1157. PubMed ID: 33077913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.