These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 29140466)

  • 41. TADs and Their Borders: Free Movement or Building a Wall?
    Chang LH; Ghosh S; Noordermeer D
    J Mol Biol; 2020 Feb; 432(3):643-652. PubMed ID: 31887284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chromatin structure dynamics during the mitosis-to-G1 phase transition.
    Zhang H; Emerson DJ; Gilgenast TG; Titus KR; Lan Y; Huang P; Zhang D; Wang H; Keller CA; Giardine B; Hardison RC; Phillips-Cremins JE; Blobel GA
    Nature; 2019 Dec; 576(7785):158-162. PubMed ID: 31776509
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The formation of chromatin domains involves a primary step based on the 3-D structure of DNA.
    Bernardi G
    Sci Rep; 2018 Dec; 8(1):17821. PubMed ID: 30546050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TAD-like single-cell domain structures exist on both active and inactive X chromosomes and persist under epigenetic perturbations.
    Cheng Y; Liu M; Hu M; Wang S
    Genome Biol; 2021 Nov; 22(1):309. PubMed ID: 34749781
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Forces driving the three-dimensional folding of eukaryotic genomes.
    Rada-Iglesias A; Grosveld FG; Papantonis A
    Mol Syst Biol; 2018 Jun; 14(6):e8214. PubMed ID: 29858282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activity-driven chromatin organization during interphase: compaction, segregation, and entanglement suppression.
    Chan B; Rubinstein M
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Condensin-driven loop extrusion on supercoiled DNA.
    Kim E; Gonzalez AM; Pradhan B; van der Torre J; Dekker C
    Nat Struct Mol Biol; 2022 Jul; 29(7):719-727. PubMed ID: 35835864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two independent modes of chromatin organization revealed by cohesin removal.
    Schwarzer W; Abdennur N; Goloborodko A; Pekowska A; Fudenberg G; Loe-Mie Y; Fonseca NA; Huber W; Haering CH; Mirny L; Spitz F
    Nature; 2017 Nov; 551(7678):51-56. PubMed ID: 29094699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of supercoiling on enhancer-promoter contacts.
    Benedetti F; Dorier J; Stasiak A
    Nucleic Acids Res; 2014; 42(16):10425-32. PubMed ID: 25123662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cohesin-mediated loop anchors confine the locations of human replication origins.
    Emerson DJ; Zhao PA; Cook AL; Barnett RJ; Klein KN; Saulebekova D; Ge C; Zhou L; Simandi Z; Minsk MK; Titus KR; Wang W; Gong W; Zhang D; Yang L; Venev SV; Gibcus JH; Yang H; Sasaki T; Kanemaki MT; Yue F; Dekker J; Chen CL; Gilbert DM; Phillips-Cremins JE
    Nature; 2022 Jun; 606(7915):812-819. PubMed ID: 35676475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation.
    Broccoli S; Rallu F; Sanscartier P; Cerritelli SM; Crouch RJ; Drolet M
    Mol Microbiol; 2004 Jun; 52(6):1769-79. PubMed ID: 15186424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries.
    Chang LH; Ghosh S; Papale A; Luppino JM; Miranda M; Piras V; Degrouard J; Edouard J; Poncelet M; Lecouvreur N; Bloyer S; Leforestier A; Joyce EF; Holcman D; Noordermeer D
    Nat Commun; 2023 Sep; 14(1):5615. PubMed ID: 37699887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [ZNF143 is involved in CTCF-mediated chromatin interactions by cooperation with cohesin and other partners].
    Ye BY; Shen WL; Wang D; Li P; Zhang Z; Shi ML; Zhang Y; Zhang FX; Zhao ZH
    Mol Biol (Mosk); 2016; 50(3):496-503. PubMed ID: 27414788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Single-Residue Mutations on CTCF Binding to DNA: Insights from Molecular Dynamics Simulations.
    Mao A; Chen C; Portillo-Ledesma S; Schlick T
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The problem of hypernegative supercoiling and R-loop formation in transcription.
    Drolet M; Broccoli S; Rallu F; Hraiky C; Fortin C; Massé E; Baaklini I
    Front Biosci; 2003 Jan; 8():d210-21. PubMed ID: 12456359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defining Functionally Relevant Spatial Chromatin Domains: It is a TAD Complicated.
    Sikorska N; Sexton T
    J Mol Biol; 2020 Feb; 432(3):653-664. PubMed ID: 31863747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Keeping intracellular DNA untangled: A new role for condensin?
    Roca J; Dyson S; Segura J; Valdés A; Martínez-García B
    Bioessays; 2022 Jan; 44(1):e2100187. PubMed ID: 34761394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical Properties of Transcription.
    Sevier SA; Levine H
    Phys Rev Lett; 2017 Jun; 118(26):268101. PubMed ID: 28707908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.