These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29140532)

  • 21. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation.
    Chechlacz M; Humphreys GW; Sotiropoulos SN; Kennard C; Cazzoli D
    J Neurosci; 2015 Nov; 35(46):15353-68. PubMed ID: 26586822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli.
    Elkin-Frankston S; Rushmore RJ; Valero-Cabré A
    Sci Rep; 2020 Feb; 10(1):3162. PubMed ID: 32081939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.
    Yan Y; Wei R; Zhang Q; Jin Z; Li L
    Sci Rep; 2016 Jul; 6():30300. PubMed ID: 27452715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interhemispheric balance of overt attention: a theta burst stimulation study.
    Cazzoli D; Wurtz P; Müri RM; Hess CW; Nyffeler T
    Eur J Neurosci; 2009 Mar; 29(6):1271-6. PubMed ID: 19302162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study.
    Yamanaka K; Yamagata B; Tomioka H; Kawasaki S; Mimura M
    Cereb Cortex; 2010 May; 20(5):1037-45. PubMed ID: 19684247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.
    Bareham CA; Georgieva SD; Kamke MR; Lloyd D; Bekinschtein TA; Mattingley JB
    Cortex; 2018 Feb; 99():30-38. PubMed ID: 29127879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driven to less distraction: rTMS of the right parietal cortex reduces attentional capture in visual search.
    Hodsoll J; Mevorach C; Humphreys GW
    Cereb Cortex; 2009 Jan; 19(1):106-14. PubMed ID: 18515299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.
    Killington C; Barr C; Loetscher T; Bradnam LV
    Neuroscience; 2016 Aug; 330():229-35. PubMed ID: 27267243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superior parietal cortex and the attention to delayed intention: An rTMS study.
    Cona G; Marino G; Bisiacchi PS
    Neuropsychologia; 2017 Jan; 95():130-135. PubMed ID: 27993562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of the human PPC to the orienting of visuospatial attention during smooth pursuit.
    Drew AS; van Donkelaar P
    Exp Brain Res; 2007 May; 179(1):65-73. PubMed ID: 17221223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS.
    Verleger R; Möller F; Kuniecki M; Smigasiewicz K; Groppa S; Siebner HR
    Exp Brain Res; 2010 Jun; 203(2):355-65. PubMed ID: 20401472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the posterior parietal cortex on cognition: An exploratory study.
    Whybird M; Coats R; Vuister T; Harrison S; Booth S; Burke M
    Brain Res; 2021 Aug; 1764():147452. PubMed ID: 33838128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Case mixing and the right parietal cortex: evidence from rTMS.
    Braet W; Humphreys GW
    Exp Brain Res; 2006 Jan; 168(1-2):265-71. PubMed ID: 16078022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perturbation of visuospatial attention by high-frequency offline rTMS.
    Jin Y; Hilgetag CC
    Exp Brain Res; 2008 Jul; 189(1):121-8. PubMed ID: 18563400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex.
    Bolognini N; Olgiati E; Rossetti A; Maravita A
    Eur J Neurosci; 2010 May; 31(10):1800-6. PubMed ID: 20584184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Callosal anisotropy predicts attentional network changes after parietal inhibitory stimulation.
    Schintu S; Cunningham CA; Freedberg M; Taylor P; Gotts SJ; Shomstein S; Wassermann EM
    Neuroimage; 2021 Feb; 226():117559. PubMed ID: 33189929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.
    Cazzoli D; Chechlacz M
    Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repetitive transcranial magnetic stimulation over right intraparietal sulcus enhances emotional face processing in the left visual field.
    Fan C; Wan C; Zhang J; Jin Z; Li L
    Neuroreport; 2018 Jul; 29(10):804-807. PubMed ID: 29668504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.