BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29140603)

  • 21. Formic acid acting as an efficient oxygen scavenger in four-electron reduction of oxygen catalyzed by a heterodinuclear iridium-ruthenium complex in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    J Am Chem Soc; 2010 Sep; 132(34):11866-7. PubMed ID: 20687556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ru(II) complexes containing dmso and pyrazolyl ligands as catalysts for nitrile hydration in environmentally friendly media.
    Ferrer Í; Rich J; Fontrodona X; Rodríguez M; Romero I
    Dalton Trans; 2013 Oct; 42(37):13461-9. PubMed ID: 23896601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bis(acetylacetonato)bis(pyrazolato)ruthenate(iii) as a redox-active scorpionate ligand.
    Yoshida J; Sugawara K; Yuge H; Okabayashi J
    Dalton Trans; 2014 Nov; 43(42):16066-73. PubMed ID: 25238163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct conversion of alcohols to acetals and H(2) catalyzed by an acridine-based ruthenium pincer complex.
    Gunanathan C; Shimon LJ; Milstein D
    J Am Chem Soc; 2009 Mar; 131(9):3146-7. PubMed ID: 19216551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A versatile ruthenium(II)-NNC complex catalyst for transfer hydrogenation of ketones and Oppenauer-type oxidation of alcohols.
    Du W; Wang L; Wu P; Yu Z
    Chemistry; 2012 Sep; 18(37):11550-4. PubMed ID: 22887575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage.
    Ito M; Ikariya T
    Chem Commun (Camb); 2007 Dec; (48):5134-42. PubMed ID: 18060121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes.
    Lin WS; Kuwata S
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells.
    Loges B; Boddien A; Junge H; Beller M
    Angew Chem Int Ed Engl; 2008; 47(21):3962-5. PubMed ID: 18457345
    [No Abstract]   [Full Text] [Related]  

  • 29. Probing the effect of heterocycle-bonding in PNX-type ruthenium pre-catalysts for reactions involving H2.
    Xu W; Langer R
    Dalton Trans; 2015 Oct; 44(38):16785-90. PubMed ID: 26339700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids.
    Li X; Ma X; Shi F; Deng Y
    ChemSusChem; 2010; 3(1):71-4. PubMed ID: 20033982
    [No Abstract]   [Full Text] [Related]  

  • 31. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
    Lu QQ; Yu HZ; Fu Y
    Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.
    Wang Y; Agarwal S; Kloekhorst A; Heeres HJ
    ChemSusChem; 2016 May; 9(9):951-61. PubMed ID: 26836970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ruthenium-catalyzed cycloisomerization of cis-3-en-1-ynes to cyclopentadiene and related derivatives through a 1,5-sigmatropic hydrogen shift of ruthenium-vinylidene intermediates.
    Datta S; Odedra A; Liu RS
    J Am Chem Soc; 2005 Aug; 127(33):11606-7. PubMed ID: 16104729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X
    Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.
    Yuki M; Sakata K; Hirao Y; Nonoyama N; Nakajima K; Nishibayashi Y
    J Am Chem Soc; 2015 Apr; 137(12):4173-82. PubMed ID: 25756856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures.
    Rodríguez-Lugo RE; Trincado M; Vogt M; Tewes F; Santiso-Quinones G; Grützmacher H
    Nat Chem; 2013 Apr; 5(4):342-7. PubMed ID: 23511424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acceleration of nucleophilic CH activation by strongly basic solvents.
    Hashiguchi BG; Young KJ; Yousufuddin M; Goddard WA; Periana RA
    J Am Chem Soc; 2010 Sep; 132(36):12542-5. PubMed ID: 20734988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ruthenium-catalyzed self-coupling of primary and secondary alcohols with the liberation of dihydrogen.
    Makarov IS; Madsen R
    J Org Chem; 2013 Jul; 78(13):6593-8. PubMed ID: 23725014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward controlling water oxidation catalysis: tunable activity of ruthenium complexes with axial imidazole/DMSO ligands.
    Wang L; Duan L; Stewart B; Pu M; Liu J; Privalov T; Sun L
    J Am Chem Soc; 2012 Nov; 134(45):18868-80. PubMed ID: 23062211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation.
    Touge T; Hakamata T; Nara H; Kobayashi T; Sayo N; Saito T; Kayaki Y; Ikariya T
    J Am Chem Soc; 2011 Sep; 133(38):14960-3. PubMed ID: 21870824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.