These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29140715)

  • 1. Measurement of Charge Transfer to Aqueous Droplets in High Voltage Electric Fields.
    Elton ES; Tibrewala Y; Rosenberg ER; Hamlin BS; Ristenpart WD
    Langmuir; 2017 Dec; 33(49):13945-13954. PubMed ID: 29140715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet Conductivity Strongly Influences Bump and Crater Formation on Electrodes during Charge Transfer.
    Elton ES; Tibrewala YV; Ristenpart WD
    Langmuir; 2018 Jun; 34(25):7284-7293. PubMed ID: 29856917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical Analysis of Droplet Charge Acquired during Contact with Electrodes in Strong Electric Fields.
    Elton ES; Tibrewala YV; Ristenpart WD
    Langmuir; 2019 Mar; 35(11):3937-3948. PubMed ID: 30758970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall Effects on Hydrodynamic Drag and the Corresponding Accuracy of Charge Measurement in Droplet Contact Charge Electrophoresis.
    Im DJ
    Langmuir; 2020 May; 36(17):4785-4794. PubMed ID: 32264683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Electrical Suspension Method for Measuring the Electric Charge on Small Silicone Oil Droplets Dispersed in Aqueous Solutions.
    Gu Y; Li D
    J Colloid Interface Sci; 1997 Nov; 195(2):343-52. PubMed ID: 9441636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving Water Droplets: The Role of Atmospheric CO
    Kowacz M; Pollack GH
    J Phys Chem B; 2019 Dec; 123(51):11003-11013. PubMed ID: 31808695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of aqueous droplets using magnetic and electrostatic forces.
    Ohashi T; Kuyama H; Suzuki K; Nakamura S
    Anal Chim Acta; 2008 Apr; 612(2):218-25. PubMed ID: 18358869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Transfer-Induced Noncoalescence and Chain Formation of Free Droplets under a Pulsed DC Electric Field.
    Huang X; He L; Luo X; Xu K; Lü Y; Yang D
    Langmuir; 2020 Dec; 36(47):14255-14267. PubMed ID: 33206532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Contact-Electrification Induced Charge Transfer on a Liquid Droplet after Contacting with a Liquid or Solid.
    Tang Z; Lin S; Wang ZL
    Adv Mater; 2021 Oct; 33(42):e2102886. PubMed ID: 34476851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Partial Coalescence Between Droplet and Oil-Water Interface in Water-in-Oil Emulsions under a Direct-Current Electric Field via Molecular Dynamics Simulation.
    Li N; Pang Y; Sun Z; Sun X; Li W; Sun Y; Zhu L; Li B; Wang Z; Zeng H
    Langmuir; 2024 Mar; 40(11):5992-6003. PubMed ID: 38445586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid.
    Im DJ; Ahn MM; Yoo BS; Moon D; Lee DW; Kang IS
    Langmuir; 2012 Aug; 28(32):11656-61. PubMed ID: 22846106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AC-electric-field-controlled multi-component droplet coalescence at microscale.
    Fang W; Tao Z; Li H; Yin S; Xu T; Huang Y; Wong T
    Lab Chip; 2023 May; 23(9):2341-2355. PubMed ID: 37078784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid.
    Jung YM; Kang IS
    Biomicrofluidics; 2009 Apr; 3(2):22402. PubMed ID: 19693337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet Demulsification Using Ultralow Voltage-Based Electrocoalescence.
    Srivastava A; Karthick S; Jayaprakash KS; Sen AK
    Langmuir; 2018 Jan; 34(4):1520-1527. PubMed ID: 29236503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric charge-mediated coalescence of water droplets for biochemical microreactors.
    Jung YM; Kang IS
    Biomicrofluidics; 2010 May; 4(2):. PubMed ID: 20697585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sessile multidroplets and salt droplets under high tangential electric fields.
    Xie G; He F; Liu X; Si L; Guo D
    Sci Rep; 2016 Apr; 6():25002. PubMed ID: 27121926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles.
    Elton ES; Rosenberg ER; Ristenpart WD
    Phys Rev Lett; 2017 Sep; 119(9):094502. PubMed ID: 28949570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Investigation of Charge Separation in Electrospray Ionization using Microparticles to Record Droplet Charge State.
    Gao J; Austin DE
    J Am Soc Mass Spectrom; 2020 Oct; 31(10):2044-2052. PubMed ID: 32924465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.