BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29141129)

  • 21. Broad-host-range Salmonella bacteriophage STP4-a and its potential application evaluation in poultry industry.
    Li M; Lin H; Jing Y; Wang J
    Poult Sci; 2020 Jul; 99(7):3643-3654. PubMed ID: 32616261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages.
    Bao H; Zhang P; Zhang H; Zhou Y; Zhang L; Wang R
    Viruses; 2015 Aug; 7(8):4836-53. PubMed ID: 26305252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation, Characterization, and Bioinformatic Analyses of Lytic Salmonella Enteritidis Phages and Tests of Their Antibacterial Activity in Food.
    Han H; Wei X; Wei Y; Zhang X; Li X; Jiang J; Wang R
    Curr Microbiol; 2017 Feb; 74(2):175-183. PubMed ID: 27900459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prophylactic Delivery of a Bacteriophage Cocktail in Feed Significantly Reduces Salmonella Colonization in Pigs.
    Thanki AM; Mignard G; Atterbury RJ; Barrow P; Millard AD; Clokie MRJ
    Microbiol Spectr; 2022 Jun; 10(3):e0042222. PubMed ID: 35579475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods.
    Guo Y; Li J; Islam MS; Yan T; Zhou Y; Liang L; Connerton IF; Deng K; Li J
    Food Res Int; 2021 Sep; 147():110492. PubMed ID: 34399488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The newly isolated lytic bacteriophages st104a and st104b are highly virulent against Salmonella enterica.
    O'Flynn G; Coffey A; Fitzgerald GF; Ross RP
    J Appl Microbiol; 2006 Jul; 101(1):251-9. PubMed ID: 16834613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations.
    Hagens S; Loessner MJ
    Curr Pharm Biotechnol; 2010 Jan; 11(1):58-68. PubMed ID: 20214608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts.
    Kocharunchitt C; Ross T; McNeil DL
    Int J Food Microbiol; 2009 Jan; 128(3):453-9. PubMed ID: 18996610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet Network, 2009.
    OzFoodNet Working Group
    Commun Dis Intell Q Rep; 2010 Dec; 34(4):396-426. PubMed ID: 21413526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety.
    Denes T; Wiedmann M
    Curr Opin Biotechnol; 2014 Apr; 26():45-9. PubMed ID: 24679257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro efficiency evaluation of phage cocktail for biocontrol of Salmonella spp. in food products.
    S SK; Bhat SG
    Arch Microbiol; 2021 Nov; 203(9):5445-5452. PubMed ID: 34406443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salmonellosis outbreak due to chicken contact leading to a foodborne outbreak associated with infected delicatessen workers.
    Hedican E; Miller B; Ziemer B; LeMaster P; Jawahir S; Leano F; Smith K
    Foodborne Pathog Dis; 2010 Aug; 7(8):995-7. PubMed ID: 20470192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The concept of using bacteriophages to improve the microbiological quality of minimally processed foods.
    Wójcicki M; Błażejak S; Gientka I; Brzezicka K
    Acta Sci Pol Technol Aliment; 2019; 18(4):373-383. PubMed ID: 31930789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three Salmonella enterica serovar Enteritidis bacteriophages from the Siphoviridae family are promising candidates for phage therapy.
    Chen Y; Sun E; Song J; Tong Y; Wu B
    Can J Microbiol; 2018 Nov; 64(11):865-875. PubMed ID: 29990444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbes versus microbes: control of pathogens in the food chain.
    Jordan K; Dalmasso M; Zentek J; Mader A; Bruggeman G; Wallace J; De Medici D; Fiore A; Prukner-Radovcic E; Lukac M; Axelsson L; Holck A; Ingmer H; Malakauskas M
    J Sci Food Agric; 2014 Dec; 94(15):3079-89. PubMed ID: 24816992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence of Salmonella-specific bacteriophages in swine feces collected from commercial farms.
    Callaway TR; Edrington TS; Brabban A; Kutter E; Karriker L; Stahl C; Wagstrom E; Anderson RC; Genovese K; McReynolds J; Harvey R; Nisbet DJ
    Foodborne Pathog Dis; 2010 Jul; 7(7):851-6. PubMed ID: 20230290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phage biocontrol for reducing bacterial foodborne pathogens in produce and other foods.
    Vikram A; Callahan MT; Woolston JW; Sharma M; Sulakvelidze A
    Curr Opin Biotechnol; 2022 Dec; 78():102805. PubMed ID: 36162186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of bacteriophages for detection and control of foodborne pathogens.
    Hagens S; Loessner MJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):513-9. PubMed ID: 17554535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epidemiology of foodborne diseases: a worldwide review.
    Todd EC
    World Health Stat Q; 1997; 50(1-2):30-50. PubMed ID: 9282385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteriophage Applications for Food Production and Processing.
    Moye ZD; Woolston J; Sulakvelidze A
    Viruses; 2018 Apr; 10(4):. PubMed ID: 29671810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.