These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29141227)

  • 1. In Situ Fixation Redefines Quiescence and Early Activation of Skeletal Muscle Stem Cells.
    Machado L; Esteves de Lima J; Fabre O; Proux C; Legendre R; Szegedi A; Varet H; Ingerslev LR; Barrès R; Relaix F; Mourikis P
    Cell Rep; 2017 Nov; 21(7):1982-1993. PubMed ID: 29141227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.
    Srivastava S; Gala HP; Mishra RK; Dhawan J
    Methods Mol Biol; 2018; 1686():215-239. PubMed ID: 29030824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo.
    van Velthoven CTJ; de Morree A; Egner IM; Brett JO; Rando TA
    Cell Rep; 2017 Nov; 21(7):1994-2004. PubMed ID: 29141228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy.
    Quarta M; Brett JO; DiMarco R; De Morree A; Boutet SC; Chacon R; Gibbons MC; Garcia VA; Su J; Shrager JB; Heilshorn S; Rando TA
    Nat Biotechnol; 2016 Jul; 34(7):752-9. PubMed ID: 27240197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.
    Gayraud-Morel B; Chrétien F; Jory A; Sambasivan R; Negroni E; Flamant P; Soubigou G; Coppée JY; Di Santo J; Cumano A; Mouly V; Tajbakhsh S
    J Cell Sci; 2012 Apr; 125(Pt 7):1738-49. PubMed ID: 22366456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene.
    Cheedipudi S; Puri D; Saleh A; Gala HP; Rumman M; Pillai MS; Sreenivas P; Arora R; Sellathurai J; Schrøder HD; Mishra RK; Dhawan J
    Nucleic Acids Res; 2015 Jul; 43(13):6236-56. PubMed ID: 26040698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single muscle-fiber isolation and culture for cellular, molecular, pharmacological, and evolutionary studies.
    Anderson JE; Wozniak AC; Mizunoya W
    Methods Mol Biol; 2012; 798():85-102. PubMed ID: 22130833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of primary skeletal muscle satellite cells from rats.
    Liu Y; Chen S; Li W; Du H; Zhu W
    Toxicol Mech Methods; 2012 Nov; 22(9):721-5. PubMed ID: 22901082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells.
    Pallafacchina G; François S; Regnault B; Czarny B; Dive V; Cumano A; Montarras D; Buckingham M
    Stem Cell Res; 2010 Mar; 4(2):77-91. PubMed ID: 19962952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkages between changes in the 3D organization of the genome and transcription during myotube differentiation in vitro.
    Doynova MD; Markworth JF; Cameron-Smith D; Vickers MH; O'Sullivan JM
    Skelet Muscle; 2017 Apr; 7(1):5. PubMed ID: 28381300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of human fetal myoblasts.
    Lapan AD; Gussoni E
    Methods Mol Biol; 2012; 798():3-19. PubMed ID: 22130828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myogenic specification of side population cells in skeletal muscle.
    Asakura A; Seale P; Girgis-Gabardo A; Rudnicki MA
    J Cell Biol; 2002 Oct; 159(1):123-34. PubMed ID: 12379804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dormancy and quiescence of skeletal muscle stem cells.
    Rocheteau P; Vinet M; Chretien F
    Results Probl Cell Differ; 2015; 56():215-35. PubMed ID: 25344673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.
    Johnston AP; Baker J; De Lisio M; Parise G
    J Renin Angiotensin Aldosterone Syst; 2011 Jun; 12(2):75-84. PubMed ID: 20921089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic control of adult skeletal muscle stem cell functions.
    Segalés J; Perdiguero E; Muñoz-Cánoves P
    FEBS J; 2015 May; 282(9):1571-88. PubMed ID: 25251895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for RNA-seq library preparation starting from a rare muscle stem cell population or a limited number of mouse embryonic stem cells.
    Dell'Orso S; Juan AH; Moiseeva V; García-Prat L; Muñoz-Cánoves P; Sartorelli V
    STAR Protoc; 2021 Jun; 2(2):100451. PubMed ID: 33937872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell.
    Seale P; Ishibashi J; Holterman C; Rudnicki MA
    Dev Biol; 2004 Nov; 275(2):287-300. PubMed ID: 15501219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle stem cells propagated as myospheres display electrophysiological properties modulated by culture conditions.
    Poulet C; Wettwer E; Christ T; Ravens U
    J Mol Cell Cardiol; 2011 Feb; 50(2):357-66. PubMed ID: 20971120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.
    Musarò A; Carosio S
    Methods Mol Biol; 2017; 1553():155-167. PubMed ID: 28229414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.