BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2914127)

  • 1. Quinine inhibits multiple Na+ and K+ transport mechanisms in Ehrlich ascites tumor cells.
    Smith TC; Levinson C
    Biochim Biophys Acta; 1989 Jan; 978(1):169-75. PubMed ID: 2914127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation flux in the ehrlich ascites tumor cell. Evidence for Na+-for-Na+ and K+-for-K+ exchange diffusion.
    Tupper JT
    Biochim Biophys Acta; 1975 Jul; 394(4):586-96. PubMed ID: 233946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell.
    Valdeolmillos M; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1982 Mar; 685(3):273-8. PubMed ID: 6279150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell.
    Mills B; Tupper JT
    J Membr Biol; 1975; 20(1-2):75-97. PubMed ID: 1121028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells.
    Geck P; Pietrzyk C; Burckhardt BC; Pfeiffer B; Heinz E
    Biochim Biophys Acta; 1980 Aug; 600(2):432-47. PubMed ID: 7407122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of the effect of Ca+2 on Na+ and K+ permeability and membrane potential of Ehrlich ascites tumor cells.
    Smith TC; Vernon KD
    J Cell Physiol; 1979 Feb; 98(2):359-69. PubMed ID: 570569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of Na+ -dependent amino acid uptake by activation of the Ca2+ -dependent K+ channel in the Ehrlich ascites tumor cell.
    Valdeolmillos M; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1982 Jul; 689(1):177-9. PubMed ID: 6285975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of ion transport in Ehrlich cells by muzolimine.
    Geck P; Pfeiffer B
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jul; 333(3):323-9. PubMed ID: 2429195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down-regulates the Na+,K+-ATPase and up-regulates two K+ permeability pathways.
    Kone BC; Brady HR; Gullans SR
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6431-5. PubMed ID: 2548216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells.
    Hoffmann EK; Lambert IH; Simonsen LO
    J Membr Biol; 1986; 91(3):227-44. PubMed ID: 2427725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of furosemide-sensitive K+ fluxes in myocytes by ouabain and recovery from metabolic inhibition.
    Kohmoto O; Krueger JA; Barry WH
    Am J Physiol; 1990 Sep; 259(3 Pt 2):H962-72. PubMed ID: 2396700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium transport in lamprey (Lampetra fluviatilis) erythrocytes: evidence for K+ channels.
    Gusev GP; Sherstobitov AO; Skulskii IA
    Comp Biochem Physiol Comp Physiol; 1992 Mar; 101(3):569-72. PubMed ID: 1348679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glucose on Ehrlich cell volume, ion transport, and membrane potential.
    Laris PC; Henius GV
    Am J Physiol; 1982 May; 242(5):C326-32. PubMed ID: 7081426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nitrogen mustard on potassium transport systems and membrane structure of Ehrlich ascites tumor cells.
    Grunicke H; Doppler W; Finch SA; Greinert R; Grünewald K; Hofmann J; Maly K; Stier A; Scheidl F; Thomas JK
    Adv Enzyme Regul; 1985; 23():277-90. PubMed ID: 3840950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible role of the ATP-sensitive potassium ion channel in determining the duration of spike-bursts in mouse pancreatic beta-cells.
    Ding WG; He LP; Omatsu-Kanbe M; Kitasato H
    Biochim Biophys Acta; 1996 Mar; 1279(2):219-26. PubMed ID: 8603090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loop diuretic-sensitive potassium flux pathways of rat glomerular mesangial cells.
    Homma T; Hoover RL; Harris RC
    Am J Physiol; 1990 May; 258(5 Pt 1):C862-70. PubMed ID: 2333983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells.
    Aiton JF; Chipperfield AR; Lamb JF; Ogden P; Simmons NL
    Biochim Biophys Acta; 1981 Sep; 646(3):389-98. PubMed ID: 7284367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.