These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2914134)

  • 21. A high-throughput screen for identifying transmembrane pore-forming peptides.
    Rausch JM; Wimley WC
    Anal Biochem; 2001 Jun; 293(2):258-63. PubMed ID: 11399041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Interaction of melittin with model membranes: effect on the size and permeability of liposomes].
    Kostrzhevskaia EG; Shcherbatskaia NV; Veklich IuI
    Ukr Biokhim Zh (1978); 1989; 61(5):77-84. PubMed ID: 2588351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of the polyene antibiotic etruscomycin with large unilamellar lipid vesicles: binding and proton permeability inducement.
    Capuozzo E; Bolard J
    Biochim Biophys Acta; 1985 Oct; 820(1):63-73. PubMed ID: 2996598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumor necrosis factor-induced permeability increase of negatively charged phospholipid vesicles.
    Oku N; Araki R; Araki H; Shibamoto S; Ito F; Nishihara T; Tsujimoto M
    J Biochem; 1987 Nov; 102(5):1303-10. PubMed ID: 3125165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of
    Dhakshinamoorthy R; Bitzhenner M; Cosson P; Soldati T; Leippe M
    Front Cell Infect Microbiol; 2018; 8():73. PubMed ID: 29662839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius.
    Komatsu H; Chong PL
    Biochemistry; 1998 Jan; 37(1):107-15. PubMed ID: 9425030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2005 Jul; 44(27):9538-44. PubMed ID: 15996108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revisiting peptide amphiphilicity for membrane pore formation.
    Lorin A; Noël M; Provencher MÈ; Turcotte V; Masson C; Cardinal S; Lagüe P; Voyer N; Auger M
    Biochemistry; 2011 Nov; 50(43):9409-20. PubMed ID: 21942823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria.
    Ringstad L; Kacprzyk L; Schmidtchen A; Malmsten M
    Biochim Biophys Acta; 2007 Mar; 1768(3):715-27. PubMed ID: 17207456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and synthesis of basic peptides having amphipathic beta-structure and their interaction with phospholipid membranes.
    Ono S; Lee S; Mihara H; Aoyagi H; Kato T; Yamasaki N
    Biochim Biophys Acta; 1990 Feb; 1022(2):237-44. PubMed ID: 2306456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of cholesterol and phospholipid exchange between mycoplasma membranes and lipid vesicles.
    Bittman R; Clejan S
    Isr J Med Sci; 1987 May; 23(5):398-402. PubMed ID: 3667216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perturbation of the lipid bilayer of model membranes by synthetic signal peptides.
    Nagaraj R; Joseph M; Reddy GL
    Biochim Biophys Acta; 1987 Oct; 903(3):465-72. PubMed ID: 3311164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of merulinic acid on biomembranes.
    Stasiuk M; Jaromin A; Kozubek A
    Biochim Biophys Acta; 2004 Dec; 1667(2):215-21. PubMed ID: 15581858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opioid peptide interactions with lipid bilayer membranes.
    Ramaswami V; Haaseth RC; Matsunaga TO; Hruby VJ; O'Brien DF
    Biochim Biophys Acta; 1992 Aug; 1109(2):195-202. PubMed ID: 1520696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of the trichorzianin C-terminal residues on the ion channel conductance in lipid bilayers.
    Duclohier H; Molle G; Spach G
    Biochim Biophys Acta; 1989 Dec; 987(1):133-6. PubMed ID: 2480816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptaibols and related peptaibiotics of Trichoderma. A review.
    Szekeres A; Leitgeb B; Kredics L; Antal Z; Hatvani L; Manczinger L; Vágvölgyi C
    Acta Microbiol Immunol Hung; 2005; 52(2):137-68. PubMed ID: 16003936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.