These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29141515)

  • 1. MRI-powered biomedical devices.
    Hovet S; Ren H; Xu S; Wood B; Tokuda J; Tse ZTH
    Minim Invasive Ther Allied Technol; 2018 Aug; 27(4):191-202. PubMed ID: 29141515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast.
    Larson BT; Erdman AG; Tsekos NV; Yacoub E; Tsekos PV; Koutlas IG
    J Biomech Eng; 2004 Aug; 126(4):458-65. PubMed ID: 15543863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR-guided and MR-monitored neurosurgical procedures at 1.5 T.
    Liu H; Hall WA; Martin AJ; Maxwell RE; Truwit CL
    J Comput Assist Tomogr; 2000; 24(6):909-18. PubMed ID: 11105712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interventional and intraoperative MR: review and update of techniques and clinical experience.
    Schulz T; Puccini S; Schneider JP; Kahn T
    Eur Radiol; 2004 Dec; 14(12):2212-27. PubMed ID: 15480689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot.
    Erin O; Boyvat M; Lazovic J; Tiryaki ME; Sitti M
    Adv Sci (Weinh); 2021 Jul; 8(13):2100463. PubMed ID: 35478933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.
    Tsekos NV; Khanicheh A; Christoforou E; Mavroidis C
    Annu Rev Biomed Eng; 2007; 9():351-87. PubMed ID: 17439358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interventional robotic systems: applications and technology state-of-the-art.
    Cleary K; Melzer A; Watson V; Kronreif G; Stoianovici D
    Minim Invasive Ther Allied Technol; 2006; 15(2):101-13. PubMed ID: 16754193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technology improvements for image-guided and minimally invasive spine procedures.
    Cleary K; Clifford M; Stoianovici D; Freedman M; Mun SK; Watson V
    IEEE Trans Inf Technol Biomed; 2002 Dec; 6(4):249-61. PubMed ID: 15224839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of medical robotics for minimally invasive soft tissue surgery.
    Dogangil G; Davies BL; Rodriguez y Baena F
    Proc Inst Mech Eng H; 2010; 224(5):653-79. PubMed ID: 20718269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI Robots for Needle-Based Interventions: Systems and Technology.
    Monfaredi R; Cleary K; Sharma K
    Ann Biomed Eng; 2018 Oct; 46(10):1479-1497. PubMed ID: 29922958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.
    Mathieu JB; Beaudoin G; Martel S
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):292-9. PubMed ID: 16485758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging-guided vascular interventions.
    Ozturk C; Guttman M; McVeigh ER; Lederman RJ
    Top Magn Reson Imaging; 2005 Oct; 16(5):369-81. PubMed ID: 16924170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.
    Tavallaei MA; Lavdas MK; Gelman D; Drangova M
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1537-45. PubMed ID: 26704372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners.
    Tsekos NV; Ozcan A; Christoforou E
    J Biomech Eng; 2005 Nov; 127(6):972-80. PubMed ID: 16438235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR conditional prostate intervention systems and actuations review.
    Liang H; Tse ZTH
    Proc Inst Mech Eng H; 2023 Jan; 237(1):18-34. PubMed ID: 36458323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking and position control of an MRI-powered needle-insertion robot.
    Bergeles C; Qin L; Vartholomeos P; Dupont PE
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():928-31. PubMed ID: 23366045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a novel MRI compatible manipulator for image guided prostate interventions.
    Krieger A; Susil RC; Ménard C; Coleman JA; Fichtinger G; Atalar E; Whitcomb LL
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):306-13. PubMed ID: 15709668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study.
    Wood BJ; Zhang H; Durrani A; Glossop N; Ranjan S; Lindisch D; Levy E; Banovac F; Borgert J; Krueger S; Kruecker J; Viswanathan A; Cleary K
    J Vasc Interv Radiol; 2005 Apr; 16(4):493-505. PubMed ID: 15802449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-guided endovascular intervention: current methods and future potential.
    Kilbride BF; Narsinh KH; Jordan CD; Mueller K; Moore T; Martin AJ; Wilson MW; Hetts SW
    Expert Rev Med Devices; 2022 Oct; 19(10):763-778. PubMed ID: 36373162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.