BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 29141633)

  • 41. [Application progress of CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection].
    Han Y; Li QW
    Yi Chuan; 2016 Jan; 38(1):9-16. PubMed ID: 26787519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4
    Albanese M; Ruhle A; Mittermaier J; Mejías-Pérez E; Gapp M; Linder A; Schmacke NA; Hofmann K; Hennrich AA; Levy DN; Humpe A; Conzelmann KK; Hornung V; Fackler OT; Keppler OT
    Nat Methods; 2022 Jan; 19(1):81-89. PubMed ID: 34949807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CXCR4 engagement is required for HIV-1-induced L-selectin shedding.
    Wang J; Marschner S; Finkel TH
    Blood; 2004 Feb; 103(4):1218-21. PubMed ID: 14576059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Developmental progress of CRISPR/Cas9 and its therapeutic applications for HIV-1 infection.
    Deng Q; Chen Z; Shi L; Lin H
    Rev Med Virol; 2018 Sep; 28(5):e1998. PubMed ID: 30024073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.
    Zhang X; Liang P; Ding C; Zhang Z; Zhou J; Xie X; Huang R; Sun Y; Sun H; Zhang J; Xu Y; Songyang Z; Huang J
    Sci Rep; 2016 Sep; 6():32565. PubMed ID: 27586692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.
    Zotova A; Lopatukhina E; Filatov A; Khaitov M; Mazurov D
    Viruses; 2017 Nov; 9(11):. PubMed ID: 29099045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification.
    Shen X; Lin Q; Liang Z; Wang J; Yang X; Liang Y; Liang H; Pan H; Yang J; Zhu Y; Li M; Xiang W; Zhu H
    CRISPR J; 2022 Jun; 5(3):445-456. PubMed ID: 35686980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells.
    Agrawal L; Lu X; Qingwen J; VanHorn-Ali Z; Nicolescu IV; McDermott DH; Murphy PM; Alkhatib G
    J Virol; 2004 Mar; 78(5):2277-87. PubMed ID: 14963124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing.
    Bolukbasi MF; Liu P; Luk K; Kwok SF; Gupta A; Amrani N; Sontheimer EJ; Zhu LJ; Wolfe SA
    Nat Commun; 2018 Nov; 9(1):4856. PubMed ID: 30451839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SaCas9 Requires 5'-NNGRRT-3' PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells.
    Xie H; Tang L; He X; Liu X; Zhou C; Liu J; Ge X; Li J; Liu C; Zhao J; Qu J; Song Z; Gu F
    Biotechnol J; 2018 Apr; 13(4):e1700561. PubMed ID: 29247600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection.
    Yin L; Hu S; Mei S; Sun H; Xu F; Li J; Zhu W; Liu X; Zhao F; Zhang D; Cen S; Liang C; Guo F
    Hum Gene Ther; 2018 Nov; 29(11):1264-1276. PubMed ID: 29644868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4.
    BouHamdan M; Strayer DS; Wei D; Mukhtar M; Duan LX; Hoxie J; Pomerantz RJ
    Gene Ther; 2001 Mar; 8(5):408-18. PubMed ID: 11313818
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Picking the Survivor! CRISPR Reveals HIV Dependency Factors.
    Schott K; König R
    Trends Microbiol; 2017 Apr; 25(4):243-245. PubMed ID: 28233621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina.
    Li F; Hung SSC; Mohd Khalid MKN; Wang JH; Chrysostomou V; Wong VHY; Singh V; Wing K; Tu L; Bender JA; Pébay A; King AE; Cook AL; Wong RCB; Bui BV; Hewitt AW; Liu GS
    Hum Gene Ther; 2019 Nov; 30(11):1349-1360. PubMed ID: 31373227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Follicular dendritic cell-mediated up-regulation of CXCR4 expression on CD4 T cells and HIV pathogenesis.
    Estes JD; Keele BF; Tenner-Racz K; Racz P; Redd MA; Thacker TC; Jiang Y; Lloyd MJ; Gartner S; Burton GF
    J Immunol; 2002 Sep; 169(5):2313-22. PubMed ID: 12193696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection.
    Venzke S; Michel N; Allespach I; Fackler OT; Keppler OT
    J Virol; 2006 Nov; 80(22):11141-52. PubMed ID: 16928758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection.
    Kamiyama H; Yoshii H; Tanaka Y; Sato H; Yamamoto N; Kubo Y
    Virology; 2009 Mar; 386(1):23-31. PubMed ID: 19178925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.