These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 29141909)

  • 1. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
    Gorter FA; Aarts MGM; Zwaan BJ; de Visser JAGM
    Genetics; 2018 Jan; 208(1):307-322. PubMed ID: 29141909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration.
    Gorter FA; Aarts MM; Zwaan BJ; de Visser JA
    Am Nat; 2016 Jan; 187(1):110-9. PubMed ID: 27277407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations.
    Gorter FA; Derks MFL; van den Heuvel J; Aarts MGM; Zwaan BJ; de Ridder D; de Visser JAGM
    Mol Biol Evol; 2017 Oct; 34(10):2613-2626. PubMed ID: 28957501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-environment fitness landscapes of a tRNA gene.
    Li C; Zhang J
    Nat Ecol Evol; 2018 Jun; 2(6):1025-1032. PubMed ID: 29686238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational robustness changes during long-term adaptation in laboratory budding yeast populations.
    Johnson MS; Desai MM
    Elife; 2022 Jul; 11():. PubMed ID: 35880743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2011 Apr; 7(4):e1002056. PubMed ID: 21552329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fitness landscape of the codon space across environments.
    Fragata I; Matuszewski S; Schmitz MA; Bataillon T; Jensen JD; Bank C
    Heredity (Edinb); 2018 Nov; 121(5):422-437. PubMed ID: 30127529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic RNA Fitness Landscapes of a Group I Ribozyme during Changes to the Experimental Environment.
    Peri G; Gibard C; Shults NH; Crossin K; Hayden EJ
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35020916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
    Chiotti KE; Kvitek DJ; Schmidt KH; Koniges G; Schwartz K; Donckels EA; Rosenzweig F; Sherlock G
    Genomics; 2014 Dec; 104(6 Pt A):431-7. PubMed ID: 25449178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the deformability of an empirical fitness landscape by microbial evolution.
    Bajić D; Vila JCC; Blount ZD; Sánchez A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11286-11291. PubMed ID: 30322921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus.
    Cervera H; Lalić J; Elena SF
    J Virol; 2016 Nov; 90(22):10160-10169. PubMed ID: 27581976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fitness landscape of a tRNA gene.
    Li C; Qian W; Maclean CJ; Zhang J
    Science; 2016 May; 352(6287):837-40. PubMed ID: 27080104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the (un)predictability of a large intragenic fitness landscape.
    Bank C; Matuszewski S; Hietpas RT; Jensen JD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14085-14090. PubMed ID: 27864516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genomic landscape of compensatory evolution.
    Szamecz B; Boross G; Kalapis D; Kovács K; Fekete G; Farkas Z; Lázár V; Hrtyan M; Kemmeren P; Groot Koerkamp MJ; Rutkai E; Holstege FC; Papp B; Pál C
    PLoS Biol; 2014 Aug; 12(8):e1001935. PubMed ID: 25157590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness landscapes emerging from pharmacodynamic functions in the evolution of multidrug resistance.
    Engelstädter J
    J Evol Biol; 2014 May; 27(5):840-53. PubMed ID: 24720850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation.
    Mustonen V; Lässig M
    Trends Genet; 2009 Mar; 25(3):111-9. PubMed ID: 19232770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitness Landscape Analysis of a tRNA Gene Reveals that the Wild Type Allele is Sub-optimal, Yet Mutationally Robust.
    Gabzi T; Pilpel Y; Friedlander T
    Mol Biol Evol; 2022 Sep; 39(9):. PubMed ID: 35976926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
    Jerison ER; Desai MM
    Curr Opin Genet Dev; 2015 Dec; 35():33-9. PubMed ID: 26370471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Fitness Landscapes from High-Coverage Sequence Profiling.
    Blanco C; Janzen E; Pressman A; Saha R; Chen IA
    Annu Rev Biophys; 2019 May; 48():1-18. PubMed ID: 30601678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.