These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 29141988)
21. Synteny-Based Development of CAPS Markers Linked to the Sweet kernel LOCUS, Controlling Amygdalin Accumulation in Almond (Prunus dulcis (Mill.) D.A.Webb). Ricciardi F; Del Cueto J; Bardaro N; Mazzeo R; Ricciardi L; Dicenta F; Sánchez-Pérez R; Pavan S; Lotti C Genes (Basel); 2018 Jul; 9(8):. PubMed ID: 30065184 [TBL] [Abstract][Full Text] [Related]
22. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
23. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922 [TBL] [Abstract][Full Text] [Related]
24. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping. Font i Forcada C; Oraguzie N; Reyes-Chin-Wo S; Espiau MT; Socias i Company R; Fernández i Martí A PLoS One; 2015; 10(6):e0127656. PubMed ID: 26111146 [TBL] [Abstract][Full Text] [Related]
25. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. Klagges C; Campoy JA; Quero-García J; Guzmán A; Mansur L; Gratacós E; Silva H; Rosyara UR; Iezzoni A; Meisel LA; Dirlewanger E PLoS One; 2013; 8(1):e54743. PubMed ID: 23382953 [TBL] [Abstract][Full Text] [Related]
28. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802 [TBL] [Abstract][Full Text] [Related]
29. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. Antanaviciute L; Fernández-Fernández F; Jansen J; Banchi E; Evans KM; Viola R; Velasco R; Dunwell JM; Troggio M; Sargent DJ BMC Genomics; 2012 May; 13():203. PubMed ID: 22631220 [TBL] [Abstract][Full Text] [Related]
30. High density SNP and DArT-based genetic linkage maps of two closely related oil palm populations. Gan ST; Wong WC; Wong CK; Soh AC; Kilian A; Low EL; Massawe F; Mayes S J Appl Genet; 2018 Feb; 59(1):23-34. PubMed ID: 29214520 [TBL] [Abstract][Full Text] [Related]
31. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. Su K; Xing H; Guo Y; Zhao F; Liu Z; Li K; Li Y; Guo X BMC Genomics; 2020 Jun; 21(1):419. PubMed ID: 32571215 [TBL] [Abstract][Full Text] [Related]
32. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680 [TBL] [Abstract][Full Text] [Related]
33. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Silva C; Garcia-Mas J; Sánchez AM; Arús P; Oliveira MM Theor Appl Genet; 2005 Mar; 110(5):959-68. PubMed ID: 15700145 [TBL] [Abstract][Full Text] [Related]
35. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Alioto T; Alexiou KG; Bardil A; Barteri F; Castanera R; Cruz F; Dhingra A; Duval H; Fernández I Martí Á; Frias L; Galán B; García JL; Howad W; Gómez-Garrido J; Gut M; Julca I; Morata J; Puigdomènech P; Ribeca P; Rubio Cabetas MJ; Vlasova A; Wirthensohn M; Garcia-Mas J; Gabaldón T; Casacuberta JM; Arús P Plant J; 2020 Jan; 101(2):455-472. PubMed ID: 31529539 [TBL] [Abstract][Full Text] [Related]
37. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz). Pootakham W; Shearman JR; Ruang-Areerate P; Sonthirod C; Sangsrakru D; Jomchai N; Yoocha T; Triwitayakorn K; Tragoonrung S; Tangphatsornruang S PLoS One; 2014; 9(12):e116028. PubMed ID: 25551642 [TBL] [Abstract][Full Text] [Related]
38. Genetic linkage maps of two apricot cultivars ( Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus. Lambert P; Hagen LS; Arus P; Audergon JM Theor Appl Genet; 2004 Apr; 108(6):1120-30. PubMed ID: 15067399 [TBL] [Abstract][Full Text] [Related]
39. Integrating genetic maps in bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. Ho WK; Chai HH; Kendabie P; Ahmad NS; Jani J; Massawe F; Kilian A; Mayes S BMC Genomics; 2017 Feb; 18(1):192. PubMed ID: 28219341 [TBL] [Abstract][Full Text] [Related]
40. Construction of a high-density linkage map and QTL mapping for important agronomic traits in Stylosanthes guianensis (Aubl.) Sw. Tang YQ; Xia ZQ; Ding ZT; Ding YC; Liu Z; Ma X; Liu JP Sci Rep; 2019 Mar; 9(1):3834. PubMed ID: 30846860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]