These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 29142212)
41. Fused Fluorenylindolenine-Donor-Based Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells. Bisht R; Sudhakar V; Mele Kavungathodi MF; Karjule N; Nithyanandhan J ACS Appl Mater Interfaces; 2018 Aug; 10(31):26335-26347. PubMed ID: 30014691 [TBL] [Abstract][Full Text] [Related]
42. Effect of Substituents in Catechol Dye Sensitizers on Photovoltaic Performance of Type II Dye-Sensitized Solar Cells. Ooyama Y; Kanda M; Uenaka K; Ohshita J Chemphyschem; 2015 Oct; 16(14):3049-57. PubMed ID: 26296714 [TBL] [Abstract][Full Text] [Related]
43. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Ooyama Y; Furue K; Enoki T; Kanda M; Adachi Y; Ohshita J Phys Chem Chem Phys; 2016 Nov; 18(44):30662-30676. PubMed ID: 27790658 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of zinc chlorophyll materials for dye-sensitized solar cell applications. Erten-Ela S; Vakuliuk O; Tarnowska A; Ocakoglu K; Gryko DT Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():676-82. PubMed ID: 25128681 [TBL] [Abstract][Full Text] [Related]
45. Salicylic acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized solar cells. Gou F; Jiang X; Li B; Jing H; Zhu Z ACS Appl Mater Interfaces; 2013 Dec; 5(23):12631-7. PubMed ID: 24229086 [TBL] [Abstract][Full Text] [Related]
46. β-Functionalized Push-Pull Porphyrin Sensitizers in Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers. Ishida M; Hwang D; Zhang Z; Choi YJ; Oh J; Lynch VM; Kim DY; Sessler JL; Kim D ChemSusChem; 2015 Sep; 8(17):2967-77. PubMed ID: 25755085 [TBL] [Abstract][Full Text] [Related]
47. The influence of antenna and anchoring moieties on the improvement of photoelectronic properties in Zn(ii)-porphyrin-TiO Urzúa-Leiva R; Pino-Rios R; Cárdenas-Jirón G Phys Chem Chem Phys; 2019 Feb; 21(8):4339-4348. PubMed ID: 30724278 [TBL] [Abstract][Full Text] [Related]
48. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Selopal GS; Wu HP; Lu J; Chang YC; Wang M; Vomiero A; Concina I; Diau EW Sci Rep; 2016 Jan; 6():18756. PubMed ID: 26738698 [TBL] [Abstract][Full Text] [Related]
49. Low-Symmetrical Zinc(II) Benzonaphthoporphyrazine Sensitizers for Light-Harvesting in Near-IR Region of Dye-Sensitized Solar Cells. Ikeuchi T; Mori S; Kobayashi N; Kimura M Inorg Chem; 2016 May; 55(10):5014-8. PubMed ID: 27120343 [TBL] [Abstract][Full Text] [Related]
50. Increased Light-Harvesting in Dye-Sensitized Solar Cells through Förster Resonance Energy Transfer within Supramolecular Dyad Systems. Kawata T; Chino Y; Kobayashi N; Kimura M Langmuir; 2018 Jun; 34(25):7294-7300. PubMed ID: 29855180 [TBL] [Abstract][Full Text] [Related]
51. New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells. He J; Guo F; Li X; Wu W; Yang J; Hua J Chemistry; 2012 Jun; 18(25):7903-15. PubMed ID: 22573564 [TBL] [Abstract][Full Text] [Related]
52. Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. Huang WK; Wu HP; Lin PL; Lee YP; Diau EW J Phys Chem Lett; 2012 Jul; 3(13):1830-5. PubMed ID: 26291868 [TBL] [Abstract][Full Text] [Related]
53. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():232-8. PubMed ID: 24866090 [TBL] [Abstract][Full Text] [Related]
54. Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents. Zhang L; Cole JM Phys Chem Chem Phys; 2016 Jul; 18(28):19062-9. PubMed ID: 27356762 [TBL] [Abstract][Full Text] [Related]
55. Application-oriented computational studies on a series of D-π-A structured porphyrin sensitizers with different electron-donor groups. Fan C; Zhang B; Li Y; Liang Y; Xue X; Feng Y Phys Chem Chem Phys; 2015 Nov; 17(45):30624-31. PubMed ID: 26523537 [TBL] [Abstract][Full Text] [Related]
56. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630 [TBL] [Abstract][Full Text] [Related]
57. Theoretical screening of novel alkyne bridged zinc porphyrins as sensitizer candidates for dye-sensitized solar cells. Zhang X; Du Y; Chen Q; Sun H; Pan T; Hu G; Ma R; Sun Y; Li D; Dou J; Pan X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():514-20. PubMed ID: 24983919 [TBL] [Abstract][Full Text] [Related]
58. Theoretical design of metal-phthalocyanine dye-sensitized solar cells with improved efficiency. Harrath K; Hussain Talib S; Boughdiri S J Mol Model; 2018 Sep; 24(10):279. PubMed ID: 30215152 [TBL] [Abstract][Full Text] [Related]
59. Designing Push-Pull Porphyrins for Efficient Dye-Sensitized Solar Cells. Parsa Z; Naghavi SS; Safari N J Phys Chem A; 2018 Jul; 122(27):5870-5877. PubMed ID: 29921128 [TBL] [Abstract][Full Text] [Related]
60. Theoretical investigation of self-assembled donor-acceptor phthalocyanine complexes and their application in dye-sensitized solar cells. Yu L; Lin L; Liu Y; Li R J Mol Graph Model; 2015 Jun; 59():100-6. PubMed ID: 25917246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]