These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29142276)

  • 1. Detecting the relevance to performance of whole-body movements.
    Furuki D; Takiyama K
    Sci Rep; 2017 Nov; 7(1):15659. PubMed ID: 29142276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposing motion that changes over time into task-relevant and task-irrelevant components in a data-driven manner: application to motor adaptation in whole-body movements.
    Furuki D; Takiyama K
    Sci Rep; 2019 May; 9(1):7246. PubMed ID: 31076575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion quality evaluation of upper limb target-reaching movements.
    Yang N; Zhang M; Huang C; Jin D
    Med Eng Phys; 2002 Mar; 24(2):115-20. PubMed ID: 11886830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.
    Bakker RS; Selen LP; Medendorp WP
    PLoS One; 2015; 10(12):e0146231. PubMed ID: 26720413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction in the Vestibular Control of Arm Movements.
    Blouin J; Bresciani JP; Guillaud E; Simoneau M
    Multisens Res; 2015; 28(5-6):487-505. PubMed ID: 26595953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Taillebot V; Vercher JL; Weiss P; Bringoux L
    Neuroscience; 2016 Jul; 327():125-35. PubMed ID: 27095713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor control in overarm throwing.
    Urbin MA
    Motor Control; 2012 Oct; 16(4):560-78. PubMed ID: 23162067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Kinematic Redundancy and Motor Equivalence During Whole-Body Reaching in Individuals With Chronic Stroke.
    Tomita Y; Mullick AA; Levin MF
    Neurorehabil Neural Repair; 2018 Feb; 32(2):175-186. PubMed ID: 29554848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redundancy, self-motion, and motor control.
    Martin V; Scholz JP; Schöner G
    Neural Comput; 2009 May; 21(5):1371-414. PubMed ID: 19718817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.
    Berret B; Darlot C; Jean F; Pozzo T; Papaxanthis C; Gauthier JP
    PLoS Comput Biol; 2008 Oct; 4(10):e1000194. PubMed ID: 18949023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic invariants during cyclical arm movements.
    Dounskaia N
    Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target and hand position information in the online control of goal-directed arm movements.
    Sarlegna F; Blouin J; Bresciani JP; Bourdin C; Vercher JL; Gauthier GM
    Exp Brain Res; 2003 Aug; 151(4):524-35. PubMed ID: 12830346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The behavioural consequences of dissociating the spatial directions of eye and arm movements.
    Gorbet DJ; Sergio LE
    Brain Res; 2009 Aug; 1284():77-88. PubMed ID: 19497310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements.
    Li Z; Roldan JR; Milutinović D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2507-10. PubMed ID: 24110236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target selection in eye-hand coordination: Do we reach to where we look or do we look to where we reach?
    Horstmann A; Hoffmann KP
    Exp Brain Res; 2005 Nov; 167(2):187-95. PubMed ID: 16044304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Balanced Reach: A Temporal and Spectral Analysis Across Increasing Performance Demands.
    Barton JE; Graci V; Hafer-Macko C; Sorkin JD; F Macko R
    J Biomech Eng; 2016 Dec; 138(12):1210091-12100913. PubMed ID: 27551977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individuality of movements in music--finger and body movements during playing of the flute.
    Albrecht S; Janssen D; Quarz E; Newell KM; Schöllhorn WI
    Hum Mov Sci; 2014 Jun; 35():131-44. PubMed ID: 24767961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference effect of observed human movement on action is due to velocity profile of biological motion.
    Kilner J; Hamilton AF; Blakemore SJ
    Soc Neurosci; 2007; 2(3-4):158-66. PubMed ID: 18633814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.