These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29142825)
1. Creating metabolic demand as an engineering strategy in Tiso T; Sabelhaus P; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Metab Eng Commun; 2016 Dec; 3():234-244. PubMed ID: 29142825 [TBL] [Abstract][Full Text] [Related]
2. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513 [TBL] [Abstract][Full Text] [Related]
3. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102 [TBL] [Abstract][Full Text] [Related]
4. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
5. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
6. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. Wilkes RA; Waldbauer J; Aristilde L mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates. Du J; Zhang A; Zhang X; Si X; Cao J Bioresour Technol; 2019 Aug; 286():121380. PubMed ID: 31048264 [TBL] [Abstract][Full Text] [Related]
9. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
10. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
11. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient production of rhamnolipid in P. putida using a novel sacB-based system and mixed carbon source. Pang AP; Wang Y; Zhang T; Gao F; Shen JD; Huang L; Zhou J; Zhang B; Liu ZQ; Zheng YG Bioresour Technol; 2024 Feb; 394():130220. PubMed ID: 38109979 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. Nikel PI; Chavarría M; Fuhrer T; Sauer U; de Lorenzo V J Biol Chem; 2015 Oct; 290(43):25920-32. PubMed ID: 26350459 [TBL] [Abstract][Full Text] [Related]
14. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Funston SJ; Tsaousi K; Smyth TJ; Twigg MS; Marchant R; Banat IM Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8443-8454. PubMed ID: 29043376 [TBL] [Abstract][Full Text] [Related]
15. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597 [TBL] [Abstract][Full Text] [Related]
16. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
17. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid. Germer A; Tiso T; Müller C; Behrens B; Vosse C; Scholz K; Froning M; Hayen H; Blank LM Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924623 [TBL] [Abstract][Full Text] [Related]
18. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775 [TBL] [Abstract][Full Text] [Related]
19. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Tiso T; Ihling N; Kubicki S; Biselli A; Schonhoff A; Bator I; Thies S; Karmainski T; Kruth S; Willenbrink AL; Loeschcke A; Zapp P; Jupke A; Jaeger KE; Büchs J; Blank LM Front Bioeng Biotechnol; 2020; 8():976. PubMed ID: 32974309 [TBL] [Abstract][Full Text] [Related]
20. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]